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Analyzing International Large-Scale Assessment Data
within a Bayesian Framework

...it is clear that it is not possible to think about learning from experience
and acting on it without coming to terms with Bayes’ theorem.
—Jerome Cornfield
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When listening to the news or reading newspapers, it not uncommon to find
periodic surges of interest regarding which countries are performing the
best in major academic subject domains such as reading, mathematics, and
science. Information on the comparability of educational outcomes across
countries is provided by international large-scale assessments (ILSAs) such
as the Organization for Economic Cooperation and Development (OECD)-
sponsored Program for International Student Assessment (PISA; OECD 2012)
the International Association for the Evaluation of Educational Achievemen‘;
(IEA)-sponsored Trends in International Mathematics and Science Study
(TIMSS; Martin et al. 2008), and the IEA-sponsored Progress in International
Reading Literacy Study (PIRLS; Mullis et al. 2008).

The policy consequences of these cross-country comparisons can be quite

profound. For example, according to the results of PISA 2000, the average
score of German students was below the OECD average, and it was found
to be lower than other countries that had similar levels of per capita gross
domestic product (GDP). Not only did Germany exhibit relatively low perfor-
mance in reading, but PISA 2000 results also showed inequities in schooling
outcomes in terms of the socioeconomic background of students. Subsequent
PISA surveys pointed out that the early tracking policies of the German educa-
tional system were not associated with better overall performance, but in fact
were associated with low equity (OECD 2003b, 2010). The results of PISA 2000
triggered a unilateral decision by the German federal government to agree to
e}iucational reforms and national standards, which moved the German cur-
ricula toward a more practical focus (Wiseman 2010). Of course, the policy
changes enacted by Germany on the basis of PISA 2000 are not guaranteed to
produce the same positive results in another country or economy.

In addition to the use of ILSAs for policy analysis, a great deal of basic
research has been conducted that utilizes a variety of ILSAs covering differ-
ent domains of interest as well as different age or grade levels. A review of
the extant literature shows that the vast majority of research conducted with
PtISA, TIMSS, and PIRLS utilizes a range of statistical methods, including
§1mple regression analysis, logistic regression modeling, multilevel model-
ing, factor analysis, item response theory, and structural equation modeling.
11‘1 almost every instance, these methods have been conducted within the
Fisherian and Neyman/Pearson schools of statistics. These schools consti-
tute the “classical” school of statistics that rest on the foundations of the fre-
quentist view of probability.

In contrast to the frequentist school of statistics, the Bayesian school presénts
a coherent, internally consistent, and (arguably) more powerful alternative to
the cla}ssical school. However, Bayesian statistics has long been ignored in the
quantitative methods training of social scientists. Typically, the only introduc-
tion that a student might have to Bayesian methodology is a brief overview of
Bayes’ theorem while studying probability in an introductory statistics class.
Two reasons can be given for lack exposure to Bayesian methods. First, until
recently, it was not possible to conduct statistical modeling from a Bayesian
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perspective because of its complexity and lack of available software. Second,
Bayesian statistics represents a compelling alternative to frequentist statistics,
and is, therefore, controversial. However, in recent years, there has been renewed
interest in the Bayesian alternative along with extraordinary developments in
the extension and application of Bayesian statistical methods to the social and
behavioral sciences. This growth has been attributed mostly to developments
in powerful computational tools that render the specification and estimation of
complex models such as those used in the analysis of ILSA data feasible from a
Bayesian perspective. However, and in addition, growing interest in Bayesian
inference has also stemmed from an overall dissatisfaction with the internal
inconsistencies of the classical approach (Howson and Urbach 2006).

The orientation of this chapter will be toward those who conduct research
using ILSA data and who are well trained in statistical modeling within the
frequentist paradigm. The goal is to introduce concepts of model specifica-
tion, estimation, and evaluation from the Bayesian perspective. Nevertheless,
the scope of this chapter is, by necessity, limited, because the field of Bayesian
statistics is remarkably wide ranging and space limitations preclude a full
development of Bayesian theory. Moreover, not all concepts covered in this
chapter will be demonstrated in our examples, owing to present software limi-
tations. Thus, the goal of this chapter will be to lay out the fundamental ideas
of Bayesian statistics as they pertain specifically to the analysis if ILSA data.

The organization of this chapter is as follows. The first section provides
an overview of Bayesian statistical inference. This is followed by a section
describing how Bayesian models are evaluated and compared. Next, we

- briefly discuss the elements of Bayesian computation. We then present three

examples of common analyses conducted on ILSA data from a Bayesian per-
spective. Our examples will utilize the PISA study, but the issues and impli-
cations outlined are applicable to TIMSS, PIRLS, and other ILSA endeavors.
We will specify models using data from PISA 2009, comparing the case where
priors are not used to the case where priors based on results from PISA 2000
are used. First, we will specify a simple country-level regression to examine
the influence of priors in a small sample size case. Next, we will estimate a
hierarchical linear model using U.S. PISA data. Finally, we will estimate a
school-level confirmatory factor analysis model of school administrator per-
“ceptions of school climate, again using U.S. PISA data. All analyses utilize
the Mplus software program (Muthén and Muthén 2012).

Overview of Bayesian Statistical Inference

This section provides an overview of Bayesian inference and follows closely
the recent overview by Kaplan and Depaoli (2012a) here discussed within
the context of ILSA data generally, and, in particular, PISA.
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To begin, denote by Y a random variable that takes on a realized value Y.
In the context of PISA, Y could be the PISA index of economic, social, and
cultural status (ESCS)* In the context of more advanced methods, Y could
be vector-valued, such as items on the PISA school climate survey. Once the
student responds to the survey items, Y becomes realized as y. In a sense, Y
is unobserved—it is the probability distribution of Y that we wish to under-
stand from the actual data values . )

Next, we denote by 0 a parameter that we believe characterizes the prob-
ability model of interest. The parameter 6 can be a scalar, such as the mean
or the variance of the ESCS distribution, or it can be vector valued, such
as the set of all parameters of a factor analysis of the PISA school climate
survey.

We are concerned with determining the probability of observing
given the unknown parameters 6, which we write as p(y | 6). In statistical
inference, the goal is to obtain estimates of the unknown parameters given
the data. This is expressed as the likelihood of the parameters given the
data, denoted as L(8|y). Often, we work with the log-likelihood written as
I(6]y). In accordance with the likelihood principle (see, e.g., Royall 1997),
the likelihood function summarizes all of the statistical information in the
data. )

The key difference between Bayesian statistical inference and frequentist
statistical inference concerns the nature of the unknown parameters 6. In the
frequentist framework, € is assumed to be unknown, but fixed. In Bayesian
statistical inference, any quantity that is unknown, such as 6, is considered
to be random, possessing a probability distribution that reflects our uncer-
tainty about the true value of 6. Because both the observed data y and the
parameters 6 are considered to be random, we can model the joint probabil-
ity of the parameters and the data as a function of the conditional probability
distribution of the data given the parameters, and the prior probability dis-
tribution of the parameters. More formally

P, y)=p(ylo)p(6). (231)
Because of the symmetry of joint probabilities

P(y|0)p(6)= p(6]y)p(y)- (232)

* From the OECD glossary of statistical terms, ESCS “was created on the basis of the following
variables: the International Socio-Economic Index of Occupational Status (ISEI); the highest
level of education of the students parents, converted into years of schooling; the PISA index
of family wealth; the PISA index of home educational resources; and the PISA index of pos-
sessions related to ‘classical’ culture in the family home.”
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Therefore
p0,y) _ py|0)p(6) 233)
0ly)= = .
o) P¥) p(y)

where p(0|y) is referred to as the posterior distribution of the parameters
6 given the observed data y. Thus, from Equation 23.3, the posterior dis-
tribution of 0 given y is equal to the data distribution p(y|6) times the
prior distribution of the parameters p(6) normalized by p(y) so that the
distribution integrates to one. Equation 23.3 is Bayes’ theorem. For discrete
variables

P(y)= Y P O)p ), (23.4)

and for continuous variables

p(y) =_[p(y|9)p(9) ae. (23.5)
4

As above, the denominator in Equation 23.3 does not involve modgl param-
eters so we can omit the term and obtain the unnormalized posterior distribution

p@|y)e<p(y | 0)p(6) (23.6)

or equivalently
p(0|y)=<L@O|y)p(6). (23.7)

Equation 23.6 represents the core of Bayesian statistical inference. e}nd it
is what separates Bayesian statistics from frequentist statistics. Specifically,
Equation 23.6 states that our uncertainty regarding the parameters of our
model, as expressed by the prior distribution p(6), is mode'mted by the actual
data p(y| 6), or equivalently, L(8|y), yielding an updated estimate of the model
parameters as expressed by the posterior distribution p(6|y). Again, 1n‘the
context of the ESCS index, Equation 23.6 states that the posterior d1str1bq—
tion of the parameters underlying ESCS (e.g, the mean and/or the vari-
ance) is proportional to the prior information based, perhaps, on previous
research, moderated by the actual sample data on ESCS as summarized })y
the likelihood function. The Bayesian framework thus encodes our prior
knowledge of the parameters via the prior distribution. Updated knowledge
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of the parameters of our model is obtained from a summary of the poste-
rior distribution. Summaries of the parameters of the posterior distribution
(described later) can (and should) be used as new priors in a subsequent
study. In essence, this is how the Bayesian framework supports evolution-
ary knowledge development and it is what separates it from the frequentist
school of statistics.

Important Assumption: Exchangeability

In most discussions of likelihood, and indeed, in the specification of most sta-
tistical models, it is common to invoke the assumption that the data y,y,,...y,
are independently and identically distributed—often referred to as the i.i.d.
assumption. Bayesians, however, invoke the deeper notion of exchangeability
to produce likelihoods and address the issue of independence.

Exchangeability arises from de Finetti's representation theorem
(de Finetti, 1974) and implies that the subscripts of a vector of data, for
example, ¥;Yy,....Y,, do not carry information that is relevant to describing
the probability distribution of the data. In other words, the joint distribution
of the data, f(y,y,,....y,) is invariant to permutations of the subscripts.*

As a simple example of exchangeability, consider the response that student
i would have to the question appearing in PISA 2009, “How much do you
agree or disagree with each of the following statements about teachers at
your school?”—”Most teachers are interested in my well-being,” where for
simplicity we recode the responses as

yi=

1, if student i agrees
(23.8)

0, if student i disagrees.

Next, consider three possible responses to 10 randomly selected students

p(1,0,1,1,0,1,0,1,0,0)
p(1,1,0,0,1,1,1,0,0,0)
p(1,0,0,0,0,0,1,1,1,1)

Exchangeability implies that only the total number of agreements matter,
not the location of those agreements in the vector. This is a subtle assump-
tion insofar as it means that we believe that there is a parameter 0 that gener-
ates the observed data via a stochastic model and that we can describe that
parameter without reference to the particular data at hand (Jackman 2009).

* Technically, according to de Finetti (1974), this refers to finite exchangeability. Infinite

exchangeability is obtained by adding the provision that every finite subset of an infinite
sequence is exchangeable.

Analyzing International Large-Scale Assessment Data 553

As Jackman (2009) points out, the fact that we can describe 6 without refer-
ence to a particular set of data is, in fact, what is implied by the idea of a prior
distribution. In fact, as Jackman notes, “the existence of a prior distribution
over a parameter is a result of de Finetti’s Representation Theorem (de Finetti
1974), rather than an assumption” (Jackman 2009, p. 40). :

It is important to note that exchangeability is weaker than the statisti-
cal assumption of independence. In the case of two events—say A and
B—independence implies that p(A | B) = p(A). If these two events are inde-
pendent, then they are exchangeable—however, exchangeability does not
imply independence.

A generalization of de Finetti’s representation theorem that is of rel-
evance to the analysis of ILSA data relates to the problem of conditional
exchangeability. In considering the PISA 2009 example, a more realistic situ-
ation arises because students are nested in schools. Thus, exchangeability
at the student level would not be expected to hold, because in consider-
ing the entire sequence of responses, school subscripts (g=1,2,...,G) on
the individual response (e.g., y,,) are not exchangeable. However, within a
given school, students might be exchangeable, and the schools themselves
(within a country) might be exchangeable. This issue also leads to the more
general idea of Bayesian hierarchical models, in which case exchangeabil-
ity applies not just to data but also to parameters (Jackman 2009). In our
multilevel modeling example below, we will assume at least conditional
exchangeability.

" Types of Priors

The distinguishing feature of Bayesian inference is the specification of
the prior distribution for the model parameters. The difficulty arises in
how a researcher goes about choosing prior distributions for the model
parameters. We can distinguish between two types of priors: (1) nonin-
formative and (2) informative priors based on how much information we
believe we have prior to data collection and how accurate we believe that
information to be.

Noninformative Priors

The argument being made throughout this chapter is that prior cycles of
PISA, and indeed information gleaned from other cognate surveys, can pro-
vide a knowledge base to be used in subsequent studies. However, in some
cases, a researcher may lack, or be unwilling to specify, prior information to
aid in drawing posterior inferences. From a Bayesian perspective, this lack of
information is still important to consider and incorporate into our statistical
models. In other words, it is equally important to quantify our ignorance as
it is to quantify our cumulative understanding of a problem at hand.

The standard approach to quantifying our ignorance is to incorporate a
noninformative prior distribution into our specification. Noninformative
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prior distributions are also referred to as objective, vague, or diffuse pri-
ors. Arguably, the most common noninformative prior distribution is the
uniform distribution over some sensible range of values. Care must be
taken in the choice of the range of values over the uniform distribution.
Specifically, a uniform [—eo,c0] distribution would be an improper prior dis-
tribution because it does not integrate to 1.0 as required of probability dis-
tributions. Another type of noninformative prior is the so-called Jeffreys’
prior, which handles some of the problems associated with uniform priors.
An important treatment of noninformative priors can be found in Press
(2003), and a discussion of “objective” Bayesian inference can be found in
Berger (2006).

Informative Priors

In many practical situations, there may be sufficient prior information on
the shape and scale of the distribution of a model parameter that it can
be systematically incorporated into the prior distribution. Such priors are
referred to as informative. One type of informative prior is based on the
notion of a conjugate prior distribution. A conjugate prior distribution is
one that, when combined with the likelihood function, yields a posterior
that is in the same distributional family as the prior distribution. This is a
very important and convenient feature because if a prior is not conjugate,
the resulting posterior distribution may not have a form that is analytically
simple to solve. Arguably, the existence of numerical simulation methods
for Bayesian inference, such as Markov chain Monte Carlo sampling, may
render nonconjugacy less of a problem.

Point Estimates of the Posterior Distribution

Bayes’ theorem shows that the posterior distribution is composed of
encoded prior information weighted by the data. With the posterior dis-
tribution in hand, it is relatively straightforward to fully describe its com-
ponents—such as the mean, mode, and variance. In addition, interval
summaries of the posterior distribution can be obtained. Summarizing
the posterior distribution provides the necessary ingredients for Bayesian
hypothesis testing.

In the general case, the expressions for the mean and variance of the poste-
rior distribution come from expressions for the mean and variance of condi-
tional distributions generally. Specifically, for the continuous case, the mean
of the posterior distribution can be written as

E(ely)= [ opt6lyas, 239)
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and is referred to as the expected a posteriori or EAP estimate. Thus, the con-

- ditional expectation of 6 is obtained by averaging over the marginal distri-

bution of y. Similarly, the conditional variance of 6 can be obtained as (see,
Gill 2002)

var(6ly)=E[(6 - E[(9|y])2 ]y),

2

(23.10)
= E(6°|y)-E(6]y)

The conditional expectation and variance of the posterior distribution
provide two simple summary values of the distribution. Another summary
measure would be the mode of the posterior distribution; the so-called max-
imum a posteriori (MAP) estimate. Those measures, along with the quan-
tiles of the posterior distribution, provide a complete description of the
distribution.

Posterior Probability Intervals

One important consequence of viewing parameters probabilistically concerns
the interpretation of confidence intervals. Recall that the frequentist confidence
interval is based on the assumption of a very large number of repeated sam-
ples from the population characterized by a fixed and unknown parameter .

* For any given sample, we obtain the sample mean i and form, for example, a

95% confidence interval. The correct frequentist interpretation is that 95% of

‘the confidence intervals formed this way capture the true parameter y under

the null hypothesis. Notice that from this perspective, the probability that the
parameter is in the interval is either zero or one.
~ In contrast, the Bayesian perspective forms a posterior probability interval
(PPL also known as a credible interval). Again, because we assume that an
unknown parameter can be described by a probability distribution, when
we sample from the posterior distribution of the model parameters, we can
obtain its quantiles. From the quantiles, we can directly obtain the probabil-
ity that a parameter lies within a particular interval.

Formally, a 100(1 ~ &)% PPI for a particular subset of the parameter space
0 is defined as

l-a= jp (Oly) ae. (23.11)
c

So, for example, a 95% PPI means that the probability that the parameter
lies in the interval is 0.95. Notice that the interpretation of the PPI is entirely
different from the frequentist confidence interval.
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Bayesian Model Evaluation and Comparison
Posterior Predictive Model Checking

An important aspect of Bayesian model evaluation that sets it apart from its
frequentist counterpart is its focus on posterior prediction. The general idea
behind posterior predictive model checking is that there should be little, if
any, discrepancy between data generated by the model and the actual data
itself. In essence, posterior predictive model checking is a method for assess-
ing the specification quality of the model from the viewpoint of predictive
accuracy. Any deviation between the model-generated data and the actual
data suggests possible model misspecification.

Posterior predictive model checking utilizes the posterior predictive dis-
tribution of replicated data. Following Gelman et al. (2003), let y*°P be data
replicated from our current model. That is \

py™ly)= Jp(ymp 6)p(6ly) do

=_[P(y’e" 6)p(y|0)p(6) do. (23.12)

Notice that the second term, p(8]y), on the right-hand side of Equation
23.12 is simply the posterior distribution of the model parameters. In the
context of PISA, Equation 23.12 states that given current data y, the distri-
bution of future observations on, say, a model predicting student reading
scores from background characteristics, denoted as py=r|y), is equal to
the probability distribution of the future observations based on the model
given the parameters, p(y*? | 6), weighted by the posterior distribution of the
model parameters, p(y | O)p(6). Thus, posterior predictive checking accounts
for uncertainty in both the parameters underlying the model and uncertainty
in the data itself.

As a means of assessing the fit of the model, posterior predictive check-
ing implies that the replicated data should match the observed data quite
closely if we are to conclude that the model fits the data. One statistic that
can be used to measure the discrepancy between the observed data and rep-
licated data is the likelihood ratio chi-square statistic. In Mplus (Muthén and
Muthén 2012), each draw of the posterior estimates is used to generate rep-
licated data. Then, the likelihood ratio chi-square is computed comparing
the observed data to the replicated data for each draw. A scatterplot can be
drawn that displays the likelihood ratio for the replicated data against the
likelihood ratio for the observed data.

Anapproach to summarizing posterior predictive checking incorporates the
notion of Bayesian p-values. Denote by T(y) the likelihood ratio test statistic
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based on the data and the model parameters estimated at the tth MCMC itera-
tion. Further, let T(y™?) be the same test statistic but defined for the replicated
data based on the model parameters estimated at the tth MCMC iteration
(described below). Then, the Bayesian p-value is defined to be

p-value = p(T((y) < T(y™*)y). (2313)

Lower values of Equation 23.13 suggest poor model fit insofar as the test
statistic based on the data does not equal or exceed the test statistic based
on replicated data generated from the model parameters themselves. Mplus
will produce a 95% confidence interval around the difference between T(y)
and T(y~P). If the lower limit of the confidence interval is positive, it sug-
gests poor model fit. Good model fit is considered to be a Bayesian p-value of
approximately 0.50 (Muthén and Asparouhov, 2012a). Mplus will also pro-
duce a posterior predictive checking scatterplot, where the number of points
above the 45-degree line corresponds to the Bayesian p-value. We will dem-
onstrate posterior predictive checking in our examples.

Deviance Information Criterion

As suggested earlier in this chapter, the Bayesian framework does not adopt
the frequentist orientation to null hypothesis significance testing. Instead,
as with posterior predictive checking, a key component of Bayesian statisti-
cal modeling is a framework for model choice, with the idea that the chosen

" model will be used for prediction. For this chapter, we will focus on the

deviance information criterion (DIC; Spiegelhalter et al. 2002) as a method for
choosing among a set of competing models.

The DIC is one of many different types of information criteria for model
selection. Arguably, the most popular method for model selection is the
Bayesian information criterion. The BIC is derived from so-called Bayes fac-
tors (Kass and Raftery 1995). In essence, a Bayes factor provides a way to
quantify the odds that the data favor one hypothesis over another, where the
hypotheses do not need to be nested. When the prior odds of favoring one
hypothesis over another are equal, the Bayes factor reduces to the ratio of
two integrated likelihoods. The BIC can then be derived from this ratio (see
Kass and Raftery 1995; Raftery 1995).

Although the BIC is derived from a fundamentally Bayesian perspective, it
is often productively used for model comparison in the frequentist domain.
However, the DIC is an explicitly Bayesian approach to model comparison
that was developed based on the notion of Bayesian deviance. Consider a par-
ticular model proposed for a set of data, denoted as p(y|6). Then, we begin by
defining Bayesian deviance as

D(6) =-2log| p(y[0) |+ 2log[ 1(y)]. (23.14)
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where the term h(y) is a standardizing factor that does not involve model
parameters and thus is not involved in model selection. Note that although
Equation 23.14 is similar to the BIC, it is not, as currently defined, an explic-
itly Bayesian measure of model fit. To accomplish this, we use Equation 23.14
to obtain a posterior mean over 6 by defining

D(6) = E, [ ~2log[ p(y | )|y ]+ 2log [(y)]. (2315)

Next, let D(@) be a posterior estimate of 6. From here, we can define the
effective dimension of the model as

4o = D(6) - D(6), : (23.16)

which is the mean deviance minus the deviance of the means. Notice that g,
is a Bayesian measure of model complexity. With gp, in hand, we simply add

the model fit term D(6) to obtain the DIC—namely

DIC = D(6) + 4p, (23.17)
=2D(0)-D(®) (23.18)

Similar to the BIC, the model with the smallest DIC among a set of compet-
ing models is preferred. The DIC is available in Mplus (Muthén and Muthén
2012) and will be demonstrated in the examples below.

Brief Overview of MCMC Estimation

As stated in the introduction, the key reason for the increased popular-
ity of Bayesian methods in the social and behavioral sciences has been the
advent of powerful computational algorithms now available in proprietary
as well as open-source software. The most common algorithm for Bayesian
estimation is based on MCMC sampling. In the interest of space, we will
not discuss the details of MCMC sampling and instead refer the reader to
number of very important papers and books that have been written about
MCMC sampling (see, e.g., Gilks et al. 1996). Suffice to say, the general idea
of MCMC is that instead of attempting to analytically solve for the moments
and quantiles of the posterior distribution, MCMC instead draws specially
constructed samples from the posterior distribution p(6|y) of the model
parameters. ’
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For the purposes of this chapter, we will use the Gibbs sampler (Geman
and Geman 1984) as implemented in Mplus (Muthén and Muthén 2012).
Informally, the Gibbs sampler proceeds as follows. Consider that the goal
is to obtain the joint posterior distribution of two model parameters—say,
6, and 6,, given some data y, written as f(6,,6,|y). These two model param-
eters can be regression coefficients from a simple multiple regression model.
Dropping the conditioning on y for simplicity, what is required is to sample
from f(6,|6,) and f(6, | 8,). In the first step, an arbitrary value for 6, is chosen,
say 6;. We next obtain a sample from f(6, |9§). Denote this value as 6}. With

this new value, we then obtain a sample g3, from f(6, ’911). The Gibbs algo-
rithm continues to draw samples using previously obtained values until two
long chains of values for both 6, and 6, are formed. It is common that the first
m of the total set of samples is dropped. These are referred to as the burn-in
samples. The remaining samples are then considered to be draws from the
marginal posterior distributions of f(6;) and f(6,).

An important part of MCMC estimation is assessing the convergence of the
algorithm. Here too, a number of approaches exist to determine if the algo-
rithm has converged (see, e.g., Sinharay 2004). A variety of these diagnostics
are reviewed and demonstrated in Kaplan and Depaoli (2012a), including
the Geweke convergence diagnostic (Geweke 1992), the Heidelberger and
Welch convergence diagnostic (Heidelberger and Welch 1983), the Raftery
and Lewis convergence diagnostic (Raftery and Lewis 1992), and the Brooks,
Gelman, and Rubin diagnostic (Gelman and Rubin 1992a,b; Gelman 1996).

~ Visual diagnostics of convergence include the trace plot and the autocor-

relation plot. The trace plot shows the value of the estimate at the tth itera-
tion of the algorithm. Convergence is indicated by a tight “caterpillar-like”
band centered around the modal value of the estimate. The autocorrelation
plot shows the degree to which the current value of the parameter is depen-
dent on the immediate value of the parameter. High autocorrelation suggests
poor convergence and that the MCMC algorithm did not do a good job of
exploring the posterior distribution (see Kim and Bolt 2007). We will preserit
both plots in the examples below.

When implementing the Gibbs sampler with multiple chains, one of
the most common diagnostics is the Brooks, Gelman, and Rubin diagnos-
tic (see, e.g., Gelman and Rubin 1992a,b; Gelman 1996). This diagnostic
is based on analysis of variance and is intended to assess convergence
among several parallel chains with varying starting values. Specifically,
Gelman and Rubin (1992a) proposed a method where an overestimate and
an underestimate of the variance of the target distribution is formed. The
overestimate of variance is represented by the between-chain variance and
the underestimate is the within-chain variance (Gelman 1996). The theory
is that these two estimates should be approximately equal at the point of
convergence. The comparison of between and within variances is referred
to as the potential scale reduction factor (PSRF) and larger values typically
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indicate that the chains have not fully explored the target distribution.
Specifically, a variance ratio that is computed with values approximately
equal to 1.0 indicates convergence. Brooks and Gelman (1998) added an
adjustment for sampling variability in the variance estimates and also
proposed a multivariate extension, which does not include the sampling
variability correction. The changes by Brooks and Gelman reflect the diag-
nostic as implemented in Mplus (Muthén and Muthén 2012). Once it has
been determined that the algorithm has converged, summary statistics,
including the posterior mean, mode, standard deviation, and PP, can be
obtained.

EXAMPLE 23.1: BAYESIAN REGRESSION ANALYSIS

In this section, we provide an example of Bdyesian regression analysis
applied to a country-level analysis of reading performance using data
from PISA 2000 and 2009. Recall that the year 2000 was the first cycle
of PISA and the major domain was reading. PISA 2009 represented the
first complete domain cycle of PISA concentrating again on reading.
The goal in presenting this example is twofold. First, we wish to dem-
onstrate Bayesian extensions of a commonly used method applied to a
sensible question of policy and research relevance. Second, we wish to
compare the results of analyses using PISA 2009 when we have no prior
information (the noninformative prior case) to the case where we use
information gleaned from PISA 2000 to provide informative priors (the
informative prior case).

We begin by discussing the basic model with noninformative and
informative priors. We then turn to the results, which provide a com-
parison of choice of priors in the context of a relatively small sample size
problem.

Model

Consider a very simple model regressing country-level reading pro-
ficiency on country-level background predictors. To begin, let y be an
n-dimensional vector (y,y,,....y,) (i=1,2,..,n) of scores from n coun-
tries on the PISA reading assessment, and let X be an n X k matrix con-
taining k background measures, such as GDP, country average teacher
salaries, and so on. Then, the normal linear regression model can be
written as

y=XB+u, (23.19)

where Bis a k x 1 vector of regression coefficients and where the first col-
umn of B contains an n-dimensional unit vector to capture the intercept
term. We assume that country-level PISA reading scores are generated
from a normal distribution—specifically

y- N(Xﬂ,-ozlﬁ, (23.20)
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where Iis an identity matrix. Moreover, we assume that the #n-dimensional
vector u of disturbance terms is assumed to be independently, identi-
cally, and normally distributed—specifically

u~N(0,571). (23.21)

From standard linear regression theory, the likelihood of the model
parameters B and o® can be written as

—n

i L(B,0%X,y)=(210?) 2 exp{—ai_—z—(y -XB)(y- X,B)}. (23.22)

Noninformative Priors

In the context of the normal linear regression model, the uniform distri-
bution is typically used as a noninformative prior. That is, we assign an
improper uniform prior to the regression coefficient f that allows f to
take on values over the support [—es, =]." This can be written as p(f}) =< c,
where c is a constant.

Next, we assign a uniform prior to log(c?) because this transformation
also allows values over the support [0, «o]. From here, the joint poste-
rior distribution of the model parameters is obtained by multiplying the
prior distributions of B and o2 by the likelihood give in Equation 23.22.
Assuming that f and 62 are independent, we obtain

p(B.0%lyX)=L(B,0°

v, X)p(B)p(c?),

o< (0-2)—11/2 exp{—_z_c:.l)z(y _Xﬂ)'(y —Xﬂ)} X € X 0'_2.

Noting that ¢ does not contain model parameters, and so drops out
with the proportionality, we obtain

p[ 8,62 y,x}c (02) ™" exp {—%ﬁ(y -XBY(y- Xﬂ)} (23.23)

As pointed out by Lynch (2007), the posterior distribution of the
model parameters in Equation 23.23 differs from the likelihood only
in the leading exponent (n/2+ 1), which although is of no conse-
quence in large samples, may be of consequence in the subsequent
example. Here, we see how the Bayesian approach and the frequentist

* The support of a distribution refers to the smallest closed interval (or “set” if the distribution
is multivariate) whose elements are actually members of the distribution. The complement to
this set has elements with probabilities of zero.
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approach align when samples are large and priors are noninforma-
tive. When samples are small, however, priors can dominate the likeli-
hood and have much greater influence on summaries of the posterior
distribution.

Informative Conjugate Priors

Turning to conjugate priors, the most sensible conjugate prior distri-
bution for the vector of regression coefficients 8 of the linear regres-
sion model is the multivariate normal prior. The argument for using the
multivariate normal distribution as the prior for B lies in the fact that
the asymptotic distribution of the regression coefficients is normal (Fox
2008).

The conditional prior distribution of the vector B given ¢ can be writ-
ten as

p(plo”) (o) "5 exp| - 2(B-B) S (8-B)|, €524

where k is the number of variables, B is the vector of mean hyperpa-
rameters assigned to B, and X =o¢”I is the diagonal matrix of constant
disturbance variances.

The conjugate prior for the variance of the disturbance term o2 is the
inverse-gamma distribution, with hyperparameters 2 and b. We write
the conjugate prior distribution for o2 as

pk(kO‘Z) o< (0 )'(““) e’ | (23.25)

With the likelihood L(8,07%|X,y) defined in Equation 23.22 as well as
the prior distributions p(8] 6) and p(0?), we have the necessary compo-
nents to obtain the joint posterior distribution of the model parameters
given the data. Specifically, the joint posterior distribution of the param-
eters Band o?is given as

p(B,0%y.X)=L(B,0*[X,y)x p(ﬂ\az) xp(?), (23.26)

which, after some algebra, yields

1 [0 n-k)+B-BYXX(B-B)
267 +2b + (ﬂ _ B)’(ﬁ _ B) (2327)

which has the form of a multivariate normal distribution.
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Data

This example presents a small sample size Bayesian regression analy-
sis. Data from PISA (OECD 2003b, 2010) and Education at a Glance (EAG;
OECD 2003a, 2009) were obtained from 25 countries both in 2000 and
2009. Variables used in the regression were teacher salary, class size,
GDP per capita, and aggregated reading performance. Teacher sal-
ary and per capita GDP were retrieved from EAG, and class size and
reading performance were obtained from PISA 2000 and 2009 results
(OECD 2003a,b, 2010). Per capita GDP was measured in equivalent U.S.
dollars converted using a purchasing power parity formula. Teacher
salary was measured relative to national income, that is, a ratio of the
teacher salary after 15 years of experience (minimum training) to per
capita GDP.

For this example, we use the Mplus software program (Muthén and
Muthén 2012). Our focus on Mplus is based on the fact that it has a
very general framework that allows for the specification of Bayesian
models.

Results

The top two panels of Figure 23.1 show the trace plots and autocorrelation
plots for the regression coefficient relating country-aggregated teacher
salary to country-level reading competency. Remaining plots are available
upon request. An inspection of the trace plots and autocorrelation plots
show evidence of convergence. Identical results were found for remaining
model parameters. Moreover, the scale reduction factor is approximately
1.0 for both cases, indicating excellent convergence of the two chains.

Table 23.1 shows the results of the Bayesian regression analysis using
noninformative and informative priors as described above. Specifically,
for the noninformative priors case, a normal prior was chosen for the
regression coefficients, with a mean of zero and variance of 10, and a
noninformative inverse-gamma prior was chosen for the residual vari-
ance. For the informative case, a normal prior was again chosen for the
regression coefficients with means based on the results of a conventional
regression using the PISA 2000 data. The prior variances of the regres-
sion coefficients were obtained by squaring the standard errors obtained
from. the conventional regression. This example demonstrates the use of
prior information based on a previous ILSA cycle.

An inspection of Table 23.1 reveals, as expected, that the posterior
standard deviations and PPIs are wider for the noninformative case
than the informative case, reflecting our uncertainty regarding the
model parameters. The top panel of Figure 23.2 shows the posterior
density plots for slope of teacher salary onreading, where we can
clearly see the differences between the noninformative and informa-
tive cases.

The bottom panel of Figure 23.2 shows the posterior predictive check-
ing scatterplot under the noninformative and informative analyses.
Recall that this plot is used to aid in evaluating the model’s goodness-
offit, with the proportion of observations above the 45-degree line
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Trace and autocorrelation plots for teacher salary slope: Bayesian regression analysis.

FIGURE 23.1

TABLE 23.1

Between-Country Bayesian Regression Estimates Using PISA 2009
and EAG Data

Parameter MAP SD p-value 95% PP
Noninformative Priors

READING on GDP Per cap 0.003  0.001 0.001 0.001, 0.004
READING on teacher salary 2394 2034 0.12 -17.44, 63.32
READING on class size -0.84 1.44 0.50 ~2.84,2.88
Informative Priors (PISA 2000)

READING on GDP per cap 0.003  0.001 0.000 0.002, 0.004
READING on teacher salary 2232 1227 0.04 -2.67,46.10
READING on class size -0.58 0.97 0.58 -1.68,2.14

Note: MAP, maxipnum a posteriori; SD, posterior standard deviation; p-value is
one-tailed.

corresponding to the Bayesian p-value. We find that the regression
model with informative priors shows slightly better fit than the model
with noninformative priors. Finally, the DIC values for the noninfor-
mative and informative priors cases is 243.64 and 241.448, respectively,
favoring the model with informative priors.

We conclude this example by noting that in the case of small sample
sizes (here, 25 countries) the influence of the priors is fairly noticeable.
Our results regarding the precision of the estimates based on using
information from the PISA 2000 cycle are considerably different than if
we had not utilized this information.

EXAMPLE 23.2: BAYESIAN MULTILEVEL MODELING

A common feature of ILSA data collection is that students are nested in
higher organizational units such as classrooms and/or schools. Indeed,
in many instances, the substantive problem concerns specifically an
understanding of the role that classrooms or school characteristics play in
predicting an outcome of interest. For example, the PISA structure delib-
erately samples schools (within a country) and then takes an age-based
sample of 15-year-olds within sampled schools. Such data collection
plans are generically referred to as clustered sampling designs. Data from
such clustered sampling designs are then collected at both levels for the
purposes of understanding each level separately, but also to understand
the inputs and processes of student- and school-level variables as they
predict both school- and student-level outputs.

It is probably without exaggeration to say that one of the most impor-
tant contributions to the empirical analysis of data arising from clustered
sampling designs such as PISA has been the development of multilevel
models. Important contributions to the theory of multilevel modeling
can be found in Raudenbush and Bryk (2002) and references therein. In
this example, we present Bayesian multilevel modeling.
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Model
1z Perhaps the most basic multilevel model is the random effects analy-
35 ¢ sis of variance model. As a simple example consider whether there are
o X o : differences among G schools (§=1,2,..,G) on the outcome of student
- \ .. o achievement y obtained from 7 students (i=1,2,..,%). In this example,
- i it is assumed that the G schools are a random sample from a popula-
o \ v e * tion of schools." The model can be written as a two-level, random effects
- S T ANOVA model as follows. Let |
i
o . :» .x.' W s oy 17} i
A Y R Yig = Be+ <y, (23.28) :
(,2 ‘ k05 - ‘.\ * w R };:‘. [xat il
2 ,M.MM : % \ R o § ; i i “
ol 2 CNe L e 2 where y,, is an achievement score for student i and school g, B, is the |
= o & P PEC S [ S school random effect, and €, is an error term with homoskedastic vari- |
5] R = 8 R |
E ° ance o2 The model for the school random effect can be written as |
g o |
K

By =1+, (23.29) |

T8
Medinn = 2228937
Mode ~ 1941857

=460

where /1 is a grand mean and &, is an error term with homoskedastic
variance @? that picks up the school effect over and above the grand
mean. Inserting Equation 23.29 into Equation 23.28 yields
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which expresses the outcome y,, in terms of an overall grand mean (, a

~ * In many large-scale studies of schooling, the schools themselves may be obtained from a

complex sampling scheme. However, we will stay with the simple example of random
sampling.
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‘where b, and B are the mean and variance hyperparameters on u that
are assumed to be fixed and known. For the within-school and between-
school variances, we specify the conjugate inverse-gamma priors—viz.

o? ~ inverse-gammal(vy /2, 0,04 /2), (23.34)

w* ~ inverse-gammal(ky /2, ko3 /2), (23.35)

where v and k are degrees of freedom and o4 and @§ are hyperparameter
values (Gelman et al. 2003).

To see how this specification fits into a Bayesian hierarchical model,
note that we can arrange all of the parameters of the random-effects
ANOVA model into a vector 8 and write the prior density as

p(a) = P(61/52;---/5G//1162,a)2), (2336)

where under the assumption of exchangeability of the school effects &,
we obtain (see, e.g., Jackman 2009)

p(6)= ﬁp(ﬁg
g=1

1,0% ) p(wp(o?)p(?) (23.37)

Slopes and Intercepts as Outcomes Model

In the simple, random-effects ANOVA model, exchangeability war-
rants the existence of prior distributions on the school means f3,. We
noted that a condition where exchangeability might not hold is if we
are in possession of some knowledge about the schools, for example,
if some are public schools and others are private schools. In this case,
exchangeability across the entire set of schools is not likely to hold,
and instead we must invoke conditional exchangeability. That is, we
might be willing to accept exchangeability within school types. Our
knowledge of school type, therefore, warrants the specification of a
more general multilevel model that specifies the school means as a
function of school-level characteristics. The addition of covariates at
the student and school levels was first discussed in the educational
context by Burstein (1980) and later developed by Raudenbush and
Bryk (2002)*

* In this section, we have made the distinction between random-effects ANOVA and multi-
level models. This is simply a matter of nomenclature. One could consider all of these models

as a special case of hierarchical Bayesian models.
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Data

This example presents a Bayesian multilevel regression analysis based on
an unweighted sample of 5000 15-year-old students in the United States
who were administered PISA 2009 (OECD 2012). The first plausible
value of reading performance served as a dependent variable and was
regressed on a set of student-level and school-level predictors. Student-
level predictors included student background variables—specifically,
gender (gender), immigrant status (native), language that they use (slang;
coded 1 if test language is the same as language at home, 0 otherwise),
and a measure of the student’s ESCS. In addition, measures of student
engagement and strategies in reading were included as predictors; spe-
cifically, enjoyment of reading (joyread), diversity in reading (divread),
memorization strategies (memor), elaboration strategies (elab), control
strategies (cstrat), student relationship with teachers (studrel), disciplin-
ary climate (disclima), and class size (clsiz). A random slope is specified
for the regression of reading performance on ESCS.

School-level predictors included school background variables; that
is, school average socioeconomic background (xescs); school size (sch-
size) and square of school size (schsize2); city (coded 1 for both a small
city and large city; 0 otherwise); and rural (coded 1 for a village, ham-
let, rural area, or a small town; 0 otherwise). In addition, measures of
school climate and policies were included; that is, school average student
relationship with teachers (xstudrel), school average disciplinary climate
(xdisclim), student behavior (studbeha), teacher behavior (teacbeha),
student selection policies (selsch), transferring policy (transfer), school
autonomy (respires, respcur), private school (private), school policies on
assessment (stdtest, assmon, asscomp), school average language-learn-
ing time (xlmins), school average science-learning time (xsmins), school
average mathematics-learning time (xmmins), shortage in staff (tcshort),
and educational material (scmatedu). The slope of reading performance
on ESCS is regressed on school average student relations with teachers
(xstudrel) school disciplinary climate (xdisclim).

Method

Two multilevel regressions were conducted in a manner similar to
Example 23.1. First, a Bayesian multilevel regression was conducted
with weakly informative priors. This analysis assumes a normal distri-
bution for the regression coefficients with a mean of zero and variance
of 10%. Weakly informative inverse-gamma priors were chosen for the
residual variances. Thus, although the prior has a mode, the precision is
so small as to be effectively noninformative. Second, a Bayesian multi-
level regression was conducted with informative priors obtained from a
conventional multilevel regression analysis of the PISA 2000 data, a man-
ner similar to the regression analysis in Example 1 except that weakly
informative inverse-gamma priors were used for the residual variances.

Results

The analysis used the Gibbs sampler as implemented in Mplus with two
chains, 100,000 iterations with 50,000 burn-in and a thinning interval of
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j 50. The default in Mplus is to discard half of the total number of iterations
| as burn-in. Thus, summary statistics on the model parameters are based
on 1,000 draws from the posterior distribution generated via the Gibbs

sampler. Figure 23.3 shows the trace plots and autocorrelation plots for
both the noninformative and informative priors cases focusing on the
random slope of reading performance on joyread. An inspection of these
plots shows evidence of convergence. Moreover, in each case, the PSRF
is very close to 1.0, indicating that the two chains have converged. Plots
for all remaining parameters also indicate convergence. These plots are
available upon request.

Tables 23.2 and 23.3 present selected results for the multilevel model
based on noninformative and informative priors, respectively. We con-
centrate on predictors that are not part of the sampling design, thus
these estimates are conditioned not only on the predictors in Table 23.2,
but also on design variables not.shown. The influence of priors can be
clearly seen when examining the random slope regression. Recall the
SLOPE refers to the regression coefficient relating reading performance
to parental social and cultural status. For the noninformative priors case,
the MAP estimate of SLOPE regressed on XSTUDREL is 042 (s.d. = 6.86)
with a one-tailed p-value of 0.36. The 95% PPI ranges from -11.22 to 16.04.
By contrast, the results of the informative case show a MAP estimate of
-141 (s.d. = 5.15) with a one-tailed p-value of 0.75 and a 95% PPI ranging
from —6.77 to 13.53. PPC plots and DIC values are not presently available ‘
in Mplus for Bayesian multilevel models. ‘ :

Informative priors

EXAMPLE 23.3: BAYESIAN CONFIRMATORY FACTOR ANALYSIS -
Model a
Recent discussions of Bayesian confirmatory factor analysis and its exten- : =
sion to Bayesian structural equation modeling can be found in Kaplan i -
and Depaoli (2012b), Lee (2007), and Muthén and Asparouhov (2012a). : z

Following the general notation originally provided by Jéreskog (1969),
write the confirmatory factor analysis model as

y=oa+An+e, (23.38)

where y is a vector of manifest variables, a is a vector of measurement
intercepts, A is a factor loading matrix, 1 is a vector of latent variables,
and g is a vector of uniquenesses with covariance matrix ¥, typically
specified to be diagonal. Under conventional assumptions (see, e.g,
Kaplan 2009), we obtain the model expressed in terms of the population
covariance matrix X, as

Noninformative priors

S =ADN +¥ (23.39)

where ® is the covariance matrix of the common factors. The distinction
between the confirmatory factor analysis (CFA) model in Equation 23.38
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FIGURE 23.3
Trace and autocorrelation plots for joy-of-reading slope: Bayesian hierarchical linear model.
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TABLE 23.2
Multilevel Bayesian Regression Estimates with Noninformative Priors
Parameter MAP SD p-value 95% PPI
Within Level
READING ON JOYREAD 27.28 1.36 0.000 25.10, 30.45
READING ON DIVREAD -3.43 1.34 0.004 -6.16,-0.93
READING ON MEMOR -13.08 1.46 0.000 -18.28, -12.55
READING ON ELAB -12.38 1.39 0.000 ~-14.60, -9.17
READING ON CSTRAT 21.70 1.61 0.000 18.56, 24.83
READING ON STUDREL 1.31 1.24 v 0.11 —-0.94, 3.89
READING ON DISCLIMA 6.40 1.31 0.000 4.87,10.01
READING ON CLSIZ 0.71 0.19 0.001 0.24,0.97
Between Level
SLOPE ON XSTUDREL 0.42 6.90 0.36 ~-11.22, 16.04
SLOPE ON XDISCLIM 5.69 . 6.30 0.09 -3.95, 20.67
READING ON XSTUDREL -13.40 10.50 0.11 -33.71,7.60
READING ON XDISCLIM 24.24 941 0.01 12.34, 49.59
READING ON STUDBEHA 0.83 3.91 0.05 -1.21,14.19
READING ON TEACBEHA 0.28 3.77 0.54 -7.57,7.20
READING ON SELSCH 3.88 5.28 0.23 —6.45,14.28
READING ON TRANSFER 1.03 6.89 0.42 -12.03, 14.91
READING ON RESPRES —-6.02 3.20 0.34 -7.73,5.13
READING ON RESPCUR 5.55 224 0.30 -3.15,5.54
READING ON PRIVATE 36.74 24.57 0.06 -10.00, 86.16
READING ON STDTEST -73.08 33.01 0.04 -124.72,5.26
READING ON ASSMON -4.15 18.53 0.43 -39.61, 33.58
READING ON ASSCOMP 12.67 8.26 0.18 -8.74,23.27
READING ON XLMINS -0.03 0.09 0.76 -0.11,0.24
READING ON XSMINS -0.14 0.08 0.09 -0.19, 0.04
READING ON XMMINS 0.15 0.09 0.49 -0.18,0.18
READING ON TCSHORT -2.39 2.98 0.23 -7.90, 3.65
READING ON SCMATEDU 2.38 2.32 0.78 -6.36,2.76

Note: MAP, maximum a posteriori; SD, posterior standard deviation; p-value is

one-tailed.

and exploratory factor analysis typically lies in the number and location
of restrictions placed in the factor loading matrix A (see, e.g., Kaplan 2009).

Conjugate Priors for SEM Parameters

To specify the prior distributions, it is notationally convenient to arrange
the model parameters as sets of common conjugate distributions. For
this model, let from = {&, A} be the set of free model parameters that are
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TABLE 23.3

Multilevel Bayesian Regression Estimates with Informative Priors Based
on PISA 2000

Parameter MAP SD p-value 95% PPI
Within Level

READING ON JOYREAD 28.44 113 0.000 24.21,28.65
READING ON DIVREAD —2.48 113 0.007 -3.87,0.53
READING ON MEMOR -16.47 1.26 0.000 -18.94, -13.99
READING ON ELAB -10.25 1.19 0.000 -14.07, -9.44
READING ON CSTRAT 20.36 1.35 0.000 19.74, 25.01
READING ON STUDREL 1.02 1.06 0.04 -0.18,3.97
READING ON DISCLIMA 5.44 1.10 0.000 2.29,6.57
READING ON CLSIZ 0.65 0.18 0.000 0.36,1.07
Between Level

SLOPE ON XSTUDREL -1.41 5.15 0.75 —-6.77,13.53
SLOPE ON XDISCLIM 9.12 4.80 0.23 -5.85,12.78
READING ON XSTUDREL -2.28 7.00 0.54 -12.82,14.29
READING ON XDISCLIM 16.37 6.75 0.01 2.34,28.71
READING ON STUDBEHA 2.14 3.03 0.14 -2.69,9.13
READING ON TEACBEHA 5.34 2.88 0.38 -4.74,6.47
READING ON SELSCH -403 3.70 0.21 -10.32,4.21
READING ON TRANSFER -5.37 5.56 0.43 -12.05, 9.81
READING ON RESPRES -2.43 2.13 0.39 -4.84, 3.57
READING ON RESPCUR -1.10 1.72 0.33 -4.07,2.70
READING ON PRIVATE 20.18  13.85 0.02 1.62, 56.47
READING ON STDTEST -16.46  10.55 0.03 -40.12, 1.12
READING ON ASSMON -0.58 9.68 0.72 ~13.56,24.43
READING ON ASSCOMP 6.90 6.66 0.35 -10.51,15.50
READING ON XLMINS 0.07 0.06 0.20 -0.06,0.17
READING ON XSMINS -0.02 0.05 0.39 -0.11, 0.08
READING ON XMMINS -0.05 0.06 0.15 ~0.18,0.06
READING ON TCSHORT -0.16 1.99 0.32 -4.85,2.98
READING ON SCMATEDU -4.67 1.95 0.15 -5.93,1.86

Note: MAP, maximum a posteriori; SD, posterior standard deviation; p-value is

one-tailed.

assumed to follow a normal distribution and let 8w= {®,¥} be the set of
free model parameters that are assumed to follow an inverse-Wishart

distribution. Thus

enorm - N(HIQ)I

(23.40)
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where pand Q are the mean and variance hyperparameters, respectively,
of the normal prior. The uniqueness covariance matrix ¥ is assumed to
follow an inverse-Wishart distribution. Specifically

0w ~TW(R,5), (23.41)

where R is a positive definite matrix, and 6> q - 1, where g is the number
of observed variables. Different choices for R and & will yield different
degrees of “informativeness” for the inverse-Wishart distribution.

Data

This example is based on a reanalysis of a confirmatory factor analy-
sis described in the OECD technical report (OECD 2012). In the report,
the confirmatory factor analysis was employed to construct two indices
indicating teacher and student behavioral problems (TEACBEHA and
STUDBEHA), using a weighted sample of students from the OECD coun-
tries. For this example, we used an unweighted sample of 165 school prin-
cipals in the United States who participated in PISA 2009. The principals
were administered a questionnaire asking to what extent student learning
is hindered by student or teacher behavioral problems. Each item has the
following four categories: not at all, very little, to some extent, and a lot.

The CFA model in this example was specified to have two factors,
which are teacher and student behavioral problems. The factor related to
teacher behavioral problems contains the following seven items: teachers’
low expectation of students (SC17Q01), poor student-teacher relations
(SC17Q03), teachers not meeting individual students’ needs (SC17Q05),
teacher absenteeism (SC17Q06), staff resisting change (SC17Q09), teachers
being too strict with students (SC17Q11), and students not being encour-
aged to achieve their full potential (SC17Q13). The second factor relating
to student behavioral problems contains the following six items: student
absenteeism (SC17Q02), disruption of classes by students (SC17Q04), stu-
dents skipping classes (SC17Q07), studénts lacking respect for teachers
(5C17Q08), student use of alcohol or illegal drugs (SC17Q10), and students
intimidating or bullying other students (SC17Q12).

Results

The analysis used the Gibbs sampler as implemented in Mplus with two
chains, 100,000 iterations with 50,000 burn-in and a thinning interval of
50. Thus, summary statistics on the model parameters are based on 1000
draws from the posterior distribution generated via the Gibbs sampler.
Figure 234 presents the trace plots and autocorrelation plots for both
the noninformative and informative cases. The plots show evidence of
convergence, and the PSRF (not shown) is very close to 1.0.

Selected results of the CFA model for the noninformative (upper panel)
and informative (lower panel) cases is displayed in Table 23.4. For the
noninformative case, a normal priot was chosen for the factor loadings,
with a mean of zero and variance of 10%% and a noninformative inverse-
gamma prior was chosen for the factor variances and unique variances.
For the informative priors case, priors on the factor loadings were based

;
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FIGURE 23.4

Trace and autocorrelation plots for factor loading three: Bayesian confirmatory factor analysis.
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TABLE 23.4
Selected Bayesian CFA Estimates with Noninformative and Informative & ]
Priors . re . . %
Parameter MAP SD p-value 95% PPI ¢ éi
Noninformative Priors :i ;‘ﬁg
Loadings: TEABEHA by i %ﬁ%
SC17Q03 0.99 0.13 0.00 0.78,1.31 : } &
SC17Q05 0.94 0.3 0.00 0.70,1.20 1 . " =
SC17Q06 0.68 0.12 0.00 0.48,0.95 : & 'S &
SC17Q09 0.87 0.14 0.00 0.73,1.28 ? & " B
SC17Q11 0.56 0.11 0.00 031,073 % . BE
SC17Q13 0.96 0.14 0.00 0.74,1.27 é // i wg
Loadings: STUDBEHA by ; Eo : o [.,g §§§ &
SC17Q04 0.85 013 0.00 0.69,1.18 / . i
SC17Q07 0.98 015 0.00 0.82,1.41 m ‘ o g
SC17Q08 0.9 0.14 0.00 0.78,1.30 \ ° a 5
SC17Q10 0.59 0.11 0.00 0.34,0.78 | = ; < &
SC17Q12 0.56 0.09 0.00 0.42,0.78 ~ et e oo b
TEABEHA with §§§ ” \\‘x £
STUDBEHA 0.18 0.04 0.00 0.12,0.27 i (< é
Informative Priors « R T W g
Loadings: TEABEHA by , ‘ wopoury fssuoq P g 8
5C17Q03 1.00 0.08 0.00 0.80,1.11 T jid %‘
SC17Q05 1.07 0.09 0.00 0.82,1.17 1z \ .o g M
SC17Q06 0.77 <009 0.00 0.58,0.94 . e %
SC17Q09 0.97 0.10 0.00 0.82,1.19 o \ o £
SC17Q11 0.64 0.08 0.00 0.40,0.72 N + B g
SC17Q13 1.06 0.10 0.00 0.84,1.21 5
Loadings: STUDBEHA by ) o e
SC17Q04 0.92 0.09 0.00 075,111 2 o . e
SC17Q07 112 0.12 0.00 0.95, 1.42 & e T 2
5C17Q08 1.02 0.10 0.00 0.86,1.24 E g i g
SC17Q10 0.73 0.10 0.00 0.48,0.88 g ) o % S
SC17Q12 0.67 0.08 0.00 0.51,0.83 g z ik =
TEABEHA with 5 L3 i g
STUDBEHA 0.15 0.03 0.00 0.12,0.23 Z | : ) % &,
, o 5
Note: MAP, maximum a posteriori; SD, posterior standard deviation. L B8, r 60 %E ‘%
on a previous factor analysis of the PISA 2000 data in a manner similar ; éﬁfﬁ \ ‘o 3 % oy
to Example 23.1. Weakly informative inverse-gamma priors were chosen 22288 v Y ;g g
for the factor variances and unique variances. ; i? 5 ) \ E &
As expected, including informative priors based on a conventional e ° i n G
CFA of the PISA 2000 data yields smaller posterior standard deviations PRSI S S R S S A 8 d '§
and narrower 95% PPIs when compared to the noninformative priors ‘ vopoury Aysueq ; & B2
case. An inspection of the posterior density plot for one of the loadings poeoridoy 8 b
(TEABEHA by SC17Q06) in the upper panel of Figure 23.5 shows the = &
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difference between the noninformative case and informative case with
respect to the shape of the posterior density.

An inspection of the lower panel of Figure 23.5 shows the PPC scat-
terplot for noninformative priors and informative priors cases. We see
that virtually all of the likelihood ratio chi-square values fall below the
45-degree line, indicating poor model fit to the posterior replicated data.
As in conventional confirmatory factor analysis, lack of model fit may
be due to the restrictions placed on the factor loading matrix in line
with the theory that there are two factors underlying these data. In the
interest of space, we do not modify this model; however, see Muthén
and Asparouhov (2012a) for an example of model modification in the
Bayesian CFA context. Finally, the DIC values for the noninformative
and informative priors cases for the CFA model are 3505.32 and 3503.50,
slightly favoring the CFA model with informative priors.

Conclusion

The purpose of this chapter was to discuss and illustrate the Bayesian
approach to the analysis of ILSA data. The chapter provided a brief overview
of the elements of Bayesian inference along with an example illustrating the
implementation of a multilevel model from a Bayesian perspective.

It is worth asking why one would choose to adopt the Bayesian frame-
work for the analysis of ILSA data—particularly when, in large sam-
ples, it can often provide results that are very close to that of frequentist
approaches such as maximum likelihood. The answer lies in the major dis-
tinction between the Bayesian approach and the frequentist approach; that
is, in the elicitation, specification, and incorporation of prior distributions
on the model parameters. It must be noted that despite the similarities
in the results, the interpretations are completely different. First, from the
Bayesian perspective, parameters are viewed as random and unknown,
reflecting our uncertainty about unknown quantities, with probability
serving as the language of uncertainty. This is in contrast to the frequen-
tist approach, which views parameters as fixed and unknown. Second,
the Bayesian perspective evaluates the quality of a substantive model in
terms of posterior prediction, with competing models judged in terms
of their support within the data. This is in contrast to conventional null
hypothesis testing with its focus on assessing a hypothesis that is known
a priori not to be true. Finally, the summary of the posterior distribution
of the model parameters reflects our current or “updated” knowledge
about the parameters of interest, and this updated knowledge should be
incorporated in future studi¢s in the form of new priors. No such notion
of “updating” knowledge exists in the frequentist framework, and each
analysis is treated as though nothing was learned from previous studies.

“W'
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Clearly, then, the critical difference relates to reflecting uncertainty via the
specification of the prior distribution.

A fair question to ask of the Bayesian approach centers on how priors
should be obtained. What Bayesian theory forces us to recognize is that it is
possible to bring in prior information on the distribution of model param-
eters, but that this requires a deeper understanding of the “elicitation prob-
lem” (O'Hagan et al. 2006; Abbas et al. 2008, 2010). In some cases, elicitation
of prior knowledge can be obtained from experts and/or key stakehold-
ers (however, see Muthén and Asparouhov [2012b] for a discussion of the
dangers of using informative priors favored by a researcher). In the context
of ILSAs, however, we have demonstrated how informative prior informa-
tion can be gleaned directly from previous waves of the same ILSA—in
our case, PISA 2000—and incorporated into a Bayesian model specification.
Alternative elicitations from different cycles of the same ILSA and even dif-
ferent ILSAs can be directly compared via Bayesian model selection mea-
sures, such as use of the DIC or Bayes factors.

To summarize, we believe that conventional frequentist statistical mod-
eling cannot exploit all that can be learned from ILSAs such as PISA. In
contrast, we believe that Bayesian inference, with its focus on formally com-
bining current data with previous research, can provide a methodological
framework for the evolutionary development of knowledge about the inputs,
processes, and outcomes of schooling. The practical benefits of the Bayesian
approach for international educational research will be realized in terms of
how it provides insights into important substantive problems.
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