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The issue of model uncertainty has been gaining interest in education and the

social sciences community over the years, and the dominant methods for han-

dling model uncertainty are based on Bayesian inference, particularly, Bayesian

model averaging. However, Bayesian model averaging assumes that the true

data-generating model is within the candidate model space over which aver-

aging is taking place. Unlike Bayesian model averaging, the method of Bayesian

stacking can account for model uncertainty without assuming that a true model

exists. An issue with Bayesian stacking, however, is that it is an optimization

technique that uses predictor-independent model weights and is, therefore, not

fully Bayesian. Bayesian hierarchical stacking, proposed by Yao et al. further

incorporates uncertainty by applying a hyperprior to the stacking weights.

Considering the importance of multilevel models commonly applied in educa-

tional settings, this paper investigates via a simulation study and a real data

example the predictive performance of original Bayesian stacking and Bayesian

hierarchical stacking along with two other readily available weighting methods,

pseudo-BMA and pseudo-BMA bootstrap (PBMA and PBMA+). Predictive per-

formance is measured by the Kullback–Leibler divergence score. Although the

differences in predictive performance among these four weighting methods in

Bayesian stacking are small, we still find that Bayesian hierarchical stacking

performs as well as conventional stacking, PBMA, and PBMA+ in settings

where a true model is not assumed to exist.

Keywords: Bayesian staistics; Ensemble methods; Large-scale assessment; Prediction;

Multilevel modeling.

Issues of Model Uncertainty

Model selection and model uncertainty have been a general challenge in

statistical inference for decades. The problem has been summarized by, among

others, Hoeting et al. (1999) who wrote
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Standard statistical practice ignores model uncertainty. Data analysts typically select

a model from some class of models and then proceed as if the selected model had

generated the data. This approach ignores the uncertainty in model selection, leading

to over-confident inferences and decisions that are more risky than one thinks they

are. (p. 382)

Similar sentiments have been expressed earlier by Leamer (1978) and Draper

et al. (1987). Indeed, the problem of ignoring model uncertainty has been recog-

nized by Breiman (1992).

In education studies, it is common to encounter data with a multilevel struc-

ture. For example, students are typically nested within schools, and thus there

will be uncertainty in prediction at the individual level as well as the group

level. To better capture the nesting effects, methods such as multilevel modeling

(also referred to as linear mixed-effects models or variance components models)

are typically employed (e.g., Raudenbush & Bryk, 2002; Goldstein, 2011). In

addition, one can use modeling strategies such as the least absolute shrinkage

and selection operator (LASSO) to select the appropriate variables and come up

with the ‘‘best’’ model for prediction. However, despite the power and popular-

ity of these approaches, they rely on the assumption that the selected model is

the one that actually generated the data, thus ignoring the typical practice of

searching for a best-fitting model and other ‘‘worse’’ models can also contain

useful information for predicting the outcome variables. For instance, to predict

students’ reading scores, the ‘‘best’’ model might omit number of books at home

(HOMEBOOKS) as a covariate at the population level, but HOMEBOOKS

itself might be significantly correlated with test scores. Furthermore,

HOMEBOOKS could potentially be effective in forecasting reading scores for a

particular student subgroup despite being omitted from the model deemed

‘‘best’’ for the overall population. In this case, if one simply selects the ‘‘best’’

model, one might lose information from HOMEBOOKS. This leads to a discus-

sion of so-calledM-frameworks.

M-frameworks

When considering the problem of model selection, three types of relation-

ships between the true data-generating model (DGM) and substantive models

need to be considered–M-closed,M-complete, andM-open, as introduced by

Bernardo and Smith (1994):

� In theM-closed setting, the true DGM is within the candidate model list.

That is, the true DGM, Mt, is one of the Mk 2 M, where k = 1, 2, . . . ,K
denotes the number of models.
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� In the M-complete setting, the true DGM is assumed to exist, but it is

not within the candidate model list, though the explicit form of

p(~yjy)= p ~yjMt, yð Þ can be derived. Rather, a list of models is considered,

with each model serving as a reasonable proxy to the true DGM.
� In theM-open setting, not only is Mt not inM, but also the explicit form

of the true DGM cannot be specified.

As we see, in theM-complete andM-open settings, we cannot assume the true

DGM is within the candidate model space. Therefore, instead of relying on a

single best model that assumes M-closed, averaging the information across

different models could potentially be a superior option (Bernardo & Smith,

1994).

Limitations of Existing Methods

There are numerous methods to evaluate multiple candidate models as well

as handling model uncertainty from a Bayesian perspective (e.g., Geisser &

Eddy, 1979a; Kass & Raftery, 1995). Through the joint efforts of many

researchers (Clyde, 1999, 2003; Draper, 1995; Hoeting et al., 1999; Leamer,

1978; Raftery et al., 1997), Bayesian model averaging (BMA) was introduced

to handle model uncertainty and obtain optimal predictive performance and has

become the choice of methods. Generally speaking, BMA averages coefficients

across a large space of models weighted by each model’s marginal posterior

probability. For a candidate model list M= M1, . . . ,MKð Þ, the posterior

probability of the quantity of interest h (e.g., a predicted value, denoted as ~y)

can be expressed as

p(ujy)=
XK

k = 1

p ujMk , yð Þp Mk jyð Þ, ð1Þ

where y1, y2, :::, yn are the observed data. Each model is weighted by the poster-

ior model probability, p Mk jyð Þ, where all weights sum to one and are all

between 0 and 1.

Bayesian model averaging has shown good out-of-sample predictive perfor-

mance across a variety of settings (Hoeting et al., 1999). In the context of educa-

tion research, Kaplan and his colleagues (Kaplan, 2021; Kaplan & Chen, 2014;

Kaplan & Huang, 2021; Kaplan & Lee, 2015, 2018; Kaplan & Yavuz, 2019),

have discussed and extended Bayesian model averaging primarily to problems in

large-scale educational assessments, such as the Program for International

Student Assessment (PISA; OECD, 2002). The general problem of using BMA

lies in its major assumption, namely, BMA assumes an M-closed setting.

Indeed, the posterior model probabilities for each candidate model is a measure
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of the probability that model k is the true model.1 Another issue with BMA is its

sensitivity to the choices of priors on the model parameters. Different p hk jMkð Þ
can lead to quite different results. For instance, Fernández et al. (2001) has

shown that different choices of priors on the parameter hk can yield disparate

outcomes. Therefore, the accurate predictive performance of BMA requires the

correct specification of the prior information.

To address these issues, Yao et al. (2018a) apply a particular method of

ensemble modeling, referred to as Bayesian stacking, to combine predictions

across candidate models, which has been shown to achieve better prediction than

BMA under theM-complete andM-open settings. Instead of using the poster-

ior model probability as the weighting scheme, Bayesian stacking employs an

optimization function that selects weight to maximize the log predictive densi-

ties across all the models. In this way, Bayesian stacking is a viable approach to

yield optimal predictions in theM-complete andM-open setting. For example,

with p covariates to predict students’ reading scores, there will be p2 models that

can be considered as the candidate models. Researchers who are interested in

the effects of demographic measures will only consider a subset of these models,

for instance, the models that include gender. As such, the true DGM is possibly

not within the candidate model sets (M-open setting). Therefore, the prediction

obtained by BMA, which uses the posterior model probability as the weighting

scheme, is questionable since it only applies to the selected candidate model

probabilities. Yao et al. (2022) further developed a more adaptive weighting

method referred to as Bayesian hierarchical stacking (BHS), which has been

shown to achieve optimal prediction and is to be described in the next section.

Our Contributions

This paper aims to examine different weighting methods in Bayesian stack-

ing using data with multilevel structures in the M-closed, M-complete, and

M-open framework. We compare Bayesian original stacking (BS), Bayesian

Hierarchical Stacking (BHS), pseudo-BMA (BMA), and pseudo-BMA boot-

strap (PBMA+). Our contribution to the literature is three-fold. First, BS, BHS,

PBMA, and PBMA+ are relatively unknown methods in education research,

and so our paper provides a systematic comparison of these weighting methods

via a simulation study and a substantive example using data from a large-scale

educational assessment. Second, this paper conducts the comparison of these

different weighting schemes for Bayesian stacking under the three M-frame-

works: one empirical study to represent theM-open setting and two simulation

studies to construct theM-closed and M-complete setting. Besides examining

the predictive capacity of each of these weighting methods, we will also show

how these threeM frameworks lead to different results. Third, stacking, in gen-

eral, is not well-known in the educational literature, where it is common to
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implement multilevel models to study within and between-school predictors of

academic and non-academic outcomes (Raudenbush & Bryk, 2002). Thus, ques-

tions such as improving the predictive performance of multilevel models should

be of general interest to education and social science researchers.

The remainder of this paper is organized as follows. In the next section, we

provide an overview of the stacking weights that will be used in this study.

They include the original stacking weights proposed by Yao et al. (2018a) and

the newly developed hierarchical stacking weights proposed by Yao et al.

(2021). In addition, we include two other types of weights that have been pro-

posed for stacking, including so-called pseudo-BMA (PBMA) and pseudo-BMA

bootstrapping (PBMA+) weights. This is followed by an empirical study using

United States data from the 2018 cycle of the Program on International Student

Assessment (PISA; OECD, 2018). This is then followed by the details of our

simulation design investigating the predictive performance of these four types

of stacking weights in the context of multilevel models. The paper closes with

conclusions and directions for further research.

Types of Bayesian Stacking Weights

In this section, we briefly review the relevant background of different weight-

ing methods in Bayesian stacking: original stacking weights, Bayesian hierarchi-

cal stacking, pseudo-BMA, and pseudo-BMA bootstrap.

Original Stacking Weights

Following a recent review by Kaplan (2021), stacking involves weighting the

predictive distributions obtained from multiple candidate models comprising an

ensemble based on different scoring rules such as the Kullback–Leibler diver-

gence (KLD; Kullback, 1959, 1987) or log predictive densities (LPD; Good,

1952) to obtain an optimal prediction. In our empirical example later, the out-

come of interest will be students’ scores on the reading literacy assessment from

PISA 2018. First, we enumerate all the candidate models which can be denoted

as fk(x) with different covariates x:

y= fk(x)+ E ð2Þ

Note that the notation fk(x) allows each model to have distinct functional forms.

The optimal prediction is obtained from a weighted combination of the

predictive densities from each fk(x). In particular, f̂k is used to estimate fk , and ~y
is the predictive distribution based on the data y. That is,
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~y=
XK

k = 1

ŵk f̂k(x): ð3Þ

To minimize the loss function between the weighted combination of predictive

distributions and the actual outcome distribution, the weight ŵ is computed

based on an optimization function:

ŵ= argmin
w

Xn

i= 1

yi �
XK

k = 1

wkf̂ k,�i(xi)

 !2

, ð4Þ

where f̂k,�i(xi) is an estimate of fk based on n� 1 observations, leaving the ith

observation out. In Bayesian stacking, leave-one-out cross-validation (LOO-CV)

is used to compute f̂k,�i(xi). Similar to q-fold CV, which holds one fold out for

validation data set, in LOO-CV, each observation serves as the validation set, with

the remaining n� 1 observations serving as the training set. To be precise, the

expected log pointwise predictive density (ELPD) can be derived as

ELPD=
Xn

i= 1

ð
pt(~yi) log p(~yijy)d~yi, ð5Þ

where pt(~yi) represents true DGM process for the predicted values ~yi. By leaving

the ith data point out one at a time, the Bayesian LOO estimates will be

ELPDloo =
Xn

i= 1

log p yijy�ið Þ, where p(yijy�i)=

ð
p(yijh)p hjy�ið Þdh: ð6Þ

LOO-CV can be implemented by the R software program LOO (Vehtari et al.,

2019).2

Hierarchical Stacking Weights

An issue with Bayesian stacking is that it is an optimization technique that

creates predictor-independent model weights for stacking—meaning that the

weights do not vary as a function of the predictor variables. Specifically, in an

ensemble of models, each member model receives one weight that is not depen-

dent on predictors in the model but rather is determined in such a way as to opti-

mize leave-one-out prediction. In this case, predictor-independent weights are

not fully Bayesian, and it would be perhaps preferable to allow for predictor-

dependent weights.

To provide for the flexibility of using predictor-dependent weights within

the Bayesian framework, Yao et al. (2021) proposed the method of Bayesian

hierarchical stacking (BHS). Taking our example using PISA data, the weight

assigned to student i in school j for a specific model to predict the student’s

Huang and Kaplan

6



reading score should be different from the weight assigned to student i# in

school j# for the prediction of that student’s reading score with the same model.

Accounting for differences in the weights for each observation can explain their

unique characteristics and thus lead to a more precise prediction for each

student.

The main difference between original Bayesian stacking and BHS lies in the

computation of stacking weights. Instead of using a single weight simplex in

BMA and BS, Yao et al. (2021) suggested using a weight function

w(x)= w1(x), . . . ,wk(x)ð Þ, where x generically denotes a set of predictors in

each model. The weights themselves are then a function of an additive model

written as

w�k(x)=mk +
XM

m= 1

amkfm(x), k ł K � 1, w�K (x)= 0, ð7Þ

and where mk is the average weight for model k, amk is a weight attached to

each of the m predictors in model k, and fm are m distinct predictors. The BHS

algorithm that we use follows the approach of Yao et al. (2021) that separates

predictors into those that are discrete and those that are continuous. The follow-

ing priors are attached to the model parameters, namely

amk jrk;N (0, rk),rk;N+
(0, sr),mk;N (m0, sm), ð8Þ

where N+
is the half-normal distribution (see Yao et al., 2021, for a discussion

of hyperprior choices). Following the suggestion given by Yao et al. (2021), for

the example and simulation study below, we use the following weakly informa-

tive priors:

m0;N (0, 1), sm = 1, srk1
= sdisc = 0:5, srk2

= scont = 1, ð9Þ

where srk1
and srk2

are hyperpriors for rk depending on whether the predictors

are discreet or continuous (see Yao et al., 2021, for more details).

From here, the pointwise predictive density can be written as

p ~yj~x,wð�Þð Þ=
XK

k = 1

wk(~x)p ~yj~x,Mkð Þ, ð10Þ

The posterior distribution of the stacking weights is obtained as

log p wð�ÞjDð Þ=
Xn

i= 1

log
XK

k = 1

wk(xi)pk,�i

 !
+ log pprior(w)+constant ð11Þ

w1:K (x)= softmax w�1:K (x)
� �

, ð12Þ
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where the term pprior refers to the prior distributions in Equation 8, and where

the softmax function converts a vector of real numbers into a vector of probabil-

ities (Stan Development Team, 2021).

The connection between BHS and original Bayesian stacking can be seen

through the concept of pooling as it pertains to the stacking framework for the

weight functions, namely, complete pooling, no-pooling, and partial pooling

method (Yao et al., 2021). Complete pooling is the same as the original stacking

approach, that is, using a weight simplex where each predictor has the same

weight wk(x)=wk . No-pooling stacking separately optimizes the objective

function in Equation 11 for each xi independently. The last method is partial

pooling stacking, which requires an appropriate hierarchical prior ppriorð�Þ so

that the posterior distribution of the stacking weights can be obtained by solving

Equation (11). Partial pooling stacking is the BHS method.

Finally, Yao et al. (2021) also discussed different choices of priors and rec-

ommended, as a general rule, using weakly informative priors, such as using a

half-normal prior on the model scale parameters rather than half-Cauchy or

inverse-gamma priors because the latter two will lead to larger dispersion.

However, researchers can choose different priors based on the purpose of their

research and the structure of the data.

Considerably more detail regarding hierarchical stacking weights can be

found in Yao et al. (2021). Suffice it to say that a contribution of this paper is

the evaluation of Bayesian hierarchical stacking in light of other existing stack-

ing weights and in the context of multilevel models with a specific focus on pre-

dictive accuracy.

Pseudo-BMA Weights

Pseudo-BMA weights were proposed by (Geisser & Eddy, 1979b; see also

Gelfand, 1996; Yao et al., 2018b). The basic idea behind PBMA is as follows.

First, as discussed in Yao et al. (2021), LOO-CV has connections to other types

of weights that can be used for stacking. For example, in the case of maximum

likelihood estimation, LOO-CV weights are asymptotically equivalent to Akaike

information criterion (AIC) weights (Akaike, 1973) that are used in frequentist

model averaging applications (Yao et al., 2018b; see also Burnham & Anderson,

2002; Fletcher, 2018). As a method of model selection, earlier work by Geisser

and Eddy (1979b; see also Gelfand, 1996) criticized the underpinnings of Bayes

factors and suggested substituting the marginal likelihood of the kth model,

p yjMkð Þ, used in the calculation of Bayes factors with Bayesian leave-one-out

cross-validation predictive densities, defined as
Qn

i= 1 p(yijy�i,Mk). Yao et al.

(2018b) refer to AIC weighting using LOO-CV predictive densities as PBMA.
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Pseudo-BMA+ Weights

The difficulty with PBMA weights is that they do not take into account

uncertainty in the LOO estimation of the weights. To address this Yao et al.

(2018b) proposed an approach that combines the Bayesian bootstrap (see

Rubin, 1981) with the ELPD defined earlier. They refer to this approach as

pseudo-BMA+ (PBMA+). The essential idea behind PBMA+ is that the pos-

terior distribution of the realizations of a random variable Z, that is,

zi, i= 1, . . . , n, follows a Dirichlet(1,., 1) distribution. Taking samples from

this distribution yields Bayesian bootstrap samples from which parameters from

this distribution can be calculated. Yao et al. (2018b) has noted that the ELPD

based on LOO can be highly skewed and argues that the Bayesian bootstrap

might be an improvement over the usual Gaussian approximation. The

PBMA+ weighting follows essentially the same line of argument as the

conventional Bayesian bootstrap. That is, define for each model k, we have

fzgk
i= 1 =

dELPDloo

n oK

k = 1
. Then taking B bootstrap samples (p1, b, . . . , pn, b),

b= 1, . . . ,B from Dirichlet(1, . . . , 1)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n

allows us to calculate the weighted

means as �zk
b =

Pn
i= 1 pi, bzk

i . From here, a Bayesian bootstrap sample of the

stacking weight for model k based on bootstrap samples of size B can be

obtained as

wk, b =
exp(n�zk

b)PK
k = 1

exp(n�zk
b)

, b= 1, . . . ,B, ð13Þ

leading to the final PBMA+ weight for model k,

wk =
1

B

XB

b= 1

wk, b, ð14Þ

Of importance to this paper, Yao et al. (2018b) showed that PBMA+
performs better than BMA and PBMA in M-open settings but not as well as

stacking using the log score. This paper adds to the existing literature by

comparing original stacking and hierarchical stacking weights to PBMA and

PBMA+ weights in the context of multilevel models applied to large-scale

assessments.

Empirical Study

This section examines the predictive performance of BS, BHS, PBMA, and

PBMA+ using data from PISA 2018 under theM-open setting. We considered
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this empirical study as an M-open setting due to two reasons: (1) We are not

able to know if the true DGM is within the candidate model sets; (2) we also

cannot derive the explicit form of the true DGM. We use open-source PISA data

from the Organisation for Economic Cooperation and Development, which is a

triennial international survey that aims to evaluate education systems across the

world (79 countries) and measures 15-year-olds’ ability to use their cognitive

outcomes such as reading, mathematics, and science knowledge and skills to

meet real-life challenges. There are 4,838 participants randomly selected for this

study (an average of 30 students in 164 schools), and we specify four models to

be our candidate models using nineteen covariates (see Table A1 for details)

and the first plausible value of the reading assessment as the dependent variable.

For this empirical data, two sample sizes are examined: (a) a small sample

of 500 students and (b) the full PISA 2018 sample size of 4,838 with 164 parti-

cipating schools and approximately 30 students within the sampled schools.

Considering the ratio between the number of students in each school and the

number of schools in PISA data is approximately 1:5, we randomly selected

schools (J = 1, 2, ., 50) and 10 randomly selected students in the selected

schools for the small sample (I = 1, 2, ., 10). Based on previous literature, stu-

dent’s academic performance is influenced by several predictors: (1) students’

level covariates such as demographic measures, motivations, attitudes, beha-

viors, etc. (e.g., Brozo et al., 2014; Caro et al., 2016; Michael & Kyriakides,

2023); (2) covariates such as ICT resources at the school level (e.g., Zhang &

Liu, 2016). Following the empirical study conducted by Kaplan (2021) here

extended to multilevel models, our candidate models for the ensemble are as

follows:

� Model 1 includes the demographic measures (FEMALE, ESCS,

HOMEPOS) and a random intercept and a random slope for ICTRES

nested within schools.
� Model 2 investigates the effects of attitudes and behaviors on reading

scores (JOYREAD, PISADIFF, SCREADCOMP, SCREADDIFF) with a

random intercept for the school effects.
� Model 3 consists of predictors about academic mindset and students’

general well-being (METASUM, GFOFAIL, MASTGOAL, SWBP,

WORKMAST, ADAPTIVITY, COMPETE) and a random intercept

accounting for school effects.
� Model 4 examines the effects of students’ attitudes toward the school on

reading scores (PERFEED, TEACHINT, BELONG) with a random inter-

cept and a random slope of TEACHINT nested in schools.

To begin, Table 1 is an example of the differences in the model obtained by

different Bayesian stacking methods for the first two students in the small
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sample. While BS, PBMA, and PBMA+ assign the same model weights to dif-

ferent students, we see that BHS assigns different weights to different students,

even for the same model. In Table 1, model 2 has less weight for student B

(0.555) compared to student A (0.648) by BHS. This indicates for student A,

model 2 plays a more important role compared to student B in terms of predic-

tion. To wit, the effects of attitudes and behaviors on reading scores are more

important for student A than student B regarding reading scores. Thus, we see

that BHS can account for the randomness due to the school effects and assign

different model weights to students in different schools.

The results for the average model weights are summarized in the upper panel

of Table 2. Across both sample size conditions and weighting methods, Model

2 is preferred over the other models. However, we can see that PBMA and

PBMA+ tend to put the majority of the weight on a single model. By contrast,

BS and BHS have a more balanced weighting scheme on all the models without

emphasizing one model. In addition, we also find that the average model weight

obtained by BHS differs from the ones in Table 1. This shows that BHS not

only provides a general summary of how each model performs at the sample

level but also at the individual level.

The lower panel of Table 2 summarizes the results of the Kullback -Leibler

divergence (KLD) for sample sizes of 500 and 4,838. Here we consider two

distributions, p(y) and g(yjh), where p(y) denotes the distribution of observed

reading literacy scores and g(yjh) denotes the prediction of these reading scores

based on a model. The KLD between these two distributions can be written as

KLD(p, g)=

ð
p(y) log

p(y)

g(yjh)

� �
dy, ð15Þ

where KLD(f , g) is the information lost when is used to approximate p(y). For

example, the actual reading outcome scores might be compared to the predicted

TABLE 1.

Model Weights for the First Two Students in the Small Sample (N = 500)

Model
weights

Student A Student B

BS BHS PBMA PBMA+ BS BHS PBMA PBMA+

Model 1 0.042 0.155 0.000 0.014 0.042 0.067 0.000 0.014
Model 2 0.576 0.648 0.921 0.615 0.576 0.555 0.921 0.615
Model 3 0.382 0.068 0.079 0.367 0.382 0.311 0.079 0.367
Model 4 0.000 0.130 0.000 0.004 0.000 0.068 0.000 0.004

Note. BMA = Bayesian model averaging; PBMA = pseudo-BMA; PBMA+ = pseudo-BMA

bootstrap. The bold values denote the weights obtained by BHS, indicating only BHS has obtained

different weights for different students.
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outcome using Bayesian model averaging along with different choices of model

and parameter priors. The model with the lowest KLD measure is deemed best

in the sense that the information lost when approximating the actual reading out-

come distribution with the distribution predicted on the basis of the model is the

lowest.

Inspecting Table 2 we find that each method puts most of the weight on

Model 2, but that BHS spreads the weights a bit more evenly across the models.

In terms of KLD, we find very little difference between BS, PBMA, and

PBMA+ for the small sample size case. BHS has the highest KLD and, there-

fore, poorer predictive performance in the small sample size case. We speculate

that this result may be due to the sensitivity of BHS to the choice of weakly

informative hyperpriors on the weight function (see Equation 8). For the large

sample case, we find that the weight is mostly placed on Model 2 and that BHS

shows the best performance in terms of KLD. Based on this real data example,

one can conclude that BHS performs better than the other weighting methods

for stacking in large sample sizes, such as those found in multilevel models

applied to large-scale assessments such as PISA. In practice, and consistent with

most Bayesian workflows (e.g., Gelman et al., 2020; Kaplan, 2023), it would be

important to examine the sensitivity of the results to small changes to the hyper-

priors of the weight function such as those we used in Equation 9.

Design of Simulation Study

In the previous section, we found evidence that BHS shows better predictive

performance, particularly in the large sample size case, whereas PBMA might

be preferred in the small sample size case. To gain a better understanding of the

predictive accuracy of these different stacking methods, we next implement a

comprehensive simulation study to examine the predictive performance for all

TABLE 2.

Average Model Weights and Predictive Performance Comparisons for PISA 2018

Example

Model
weights

N = 500 N = 4,838

BS BHS PBMA PBMA+ BS BHS PBMA PBMA+

Model 1 0.042 0.189 0.000 0.014 0.000 0.113 0.000 0.000
Model 2 0.576 0.393 0.921 0.615 0.638 0.477 1.000 0.954
Model 3 0.382 0.277 0.079 0.367 0.362 0.322 0.000 0.046
Model 4 0.000 0.142 0.000 0.004 0.000 0.098 0.000 0.000
Predictive scores

KLD 0.031 0.045 0.018 0.032 0.055 0.039 0.074 0.073

The bold values denotes the smallest KLD across all the methods.
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Bayesian stacking methods under M-closed and M-complete settings under

different sample size conditions and different intraclass correlations.

Data Generation Process

For our simulation study, we generate data based on model 2 since it obtains

the highest weight in the empirical study. Model 2 includes four covariates and

one random intercept for the school. Let x1ij, x2ij, x3ij, and x4ij denote the

covariates which are normally distributed with the same mean and variance as

the corresponding attitude and behaviors related variables in the PISA data. To

distinguish M-closed and M-complete settings, we add a scalar, r, to the

Gaussian noise Eij. More specifically,

yij = f (x)+rEij

f (x)=b00 +b01x1ij +b02x2ij +b03x3ij + b04x4ij +U0j,
ð16Þ

where yij is the response variable for student i in school j, xpij denotes student i

who is in school j, and has a value on variable p (p= 1, . . . ,P). The parameter

b00 is the overall intercept, b0p denote the regression coefficients for

xpij p= 1, 2, 3, 4. The term U0j denotes the random intercept for the school

effects. We set r to be 0 for theM-closed setting, which indicates the data is gen-

erated exactly according to the true DGM without any noise. In the M-complete

setting, we set r to be 5, which indicates that we know the explicit form of the

true DGM, but the generated data does not completely depend on the true DGM.

In this way, we can include the DGM, f (x) in the ensemble for both situations to

examine the predictive performance inM-closed andM-complete settings.

As mentioned above, PISA 2018 data for the United States has approxi-

mately 30 students nested in 150 schools, which is a 1:5 ratio for within-group

sample size to the between-group sample size. To mimic real data settings, we

generate the data with a small sample of 500 where the number of schools J is

set to be 50 and the number of students I in each school is 10. For the large

sample, we set I to be 30 and J to be 150. In addition, Hedges and Hedberg

(2007) have demonstrated that the intra-class correlation (ICC) in educational

data generally falls in the range between .1 to .25. Therefore, we also study the

impact of between-school variability by setting the ICC to .1, .2, and .3 when

we generate the data. More specifically, the corresponding standard deviations

are 1.667, 2.041, and 5 in theM-complete setting. Noticing that ICC cannot be

computed when the individual variation is zero r= 0ð Þ in the M-closed set-

ting, we also set the same between-group standard deviation as in theM-com-

plete setting.

After generating the data, we fit the simulated data using the rstanarm
packages (Goodrich, Gabry, Ali, & Brilleman, 2022) in the statistical software

environment R (R Core Team, 2022) version 4.2.1. Given that we are interested
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in how the school effects bring randomness to the prediction, all of our candidate

models include a random intercept for school. Therefore, there are 15 candidate

models (denoted as M1–M15) in total with different choices of the combination

of four covariates (i.e.,
4

1

� �
,

4

2

� �
,

4

3

� �
,

4

4

� �
). Table 3 summarizes the cov-

ariates in each candidate model and U0j denotes the random school intercept.

We used stan_lmer function in rstanarm to fit all the candidate models and

extracted the weighted densities for each model using loo function in R package

loo (Vehtari et al., 2022). For BHS, we used rstan (Stan Development Team,

2020) to specify the corresponding priors, hyperpriors, predictor-dependent

weights, and log-likelihoods. All software code for the simulation study is

available in a GitHub repository https://github.com/mhuang233/BayesStacking_

Edu_2024.

Results of Simulation Study

This section presents the simulation study results. First, we discuss the con-

vergence of the algorithms. This is followed by a discussion of the impact of

different stacking methods across sample sizes and between-group variability

conditions. Following, we discuss the predictive performance of the different

stacking methods. Finally, we discuss the computational efficiency of running

these different stacking approaches.

TABLE 3.

Summary of Covariates in Each Candidate Model.

Models Covariates Random effects

M1 x1ij U0j

M2 x2ij U0j

M3 x3ij U0j

M4 x4ij U0j

M5 x1ij + x2ij U0j

M6 x1ij + x3ij U0j

M7 x1ij + x4ij U0j

M8 x2ij + x3ij U0j

M9 x2ij + x4ij U0j

M10 x3ij + x4ij U0j

M11 x1ij + x2ij + x3ij U0j

M12 x1ij + x2ij + x4ij U0j

M13 x1ij + x3ij + x4ij U0j

M14 x2ij + x3ij + x4ij U0j

M15 x1ij + x2ij + x3ij + x4ij U0j

Huang and Kaplan
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Convergence

To begin, we examine the two MCMC convergence criteria for all 15 models.

Conventional measures for convergence are the potential scale reduction factor

(PSRF) and the effective sample size (ESS). PSRF, often denoted as Rhat or R̂ is

based on an analysis of variance and is intended to assess convergence among

several parallel chains with varying starting values and is measured by the ratio

of the between-chain variance to the within-chain variance (Gelman, 1996). The

idea is that if the ratio of these two sources of variance is equal to one, then this

is evidence that the chains have converged. If R̂.1:01, this may be a cause for

concern. The ESS is a measure of the number of independent MCMC draws,

which is proportional to the number of iterations of the MCMC algorithm and

the autocorrelation present in the samples. The closer the ESS is to the number

of samples taken from the posterior distribution (accounting for warm-up sam-

ples and thinning), the better convergence the model has achieved.

With 100 replications used in this study, the relative prediction bias for all

the fitted models was less than 10%, which indicates that 100 replications are

adequate. With four chains and 10,000 iterations per chain, 5,000 iterations used

for warm-up, and a thinning interval of 10, the total number of draws on which

inferences are being made is 2,000. We find that all of the models managed to

converge with the effective samples at around 2,000, and all R̂ were less than

1.01.

Model Weights

In this section, we investigate the difference in model weights obtained by

different weighting methods in Bayesian stacking. Since BHS uses predictor-

dependent weights for each covariate, we take an average of the weights for

each predictor and compare it with the other BS methods.

Figure 1 shows the model weights for both the small sample and the large

sample across different levels of between-group variability in theM-closed set-

ting r= 0ð Þ. As expected, the true DGM (M15) yields the highest weights

within the M-closed setting. More specifically, PBMA and PBMA+ assign

100% weight to model 15, while BHS and BS distribute the weights across the

other models. This becomes more apparent in the large sample (N = 4,500),

where BHS and BS appear to put more weight in model 12, compared to the

small sample case. This might be due to the existence of unstructured random

noise created during the data generation process. Generally speaking, there is

not much difference in model weights when the between-group standard devia-

tion changes from 1.667 to 2.041 and 5. The variation in the model weights

appears to be mainly due to the sample size for all the Bayesian stacking

methods.
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Similarly, Figure 2 shows the model weights in the M-complete setting

(r=5). Generally speaking, the weights are more ‘‘spread out’’ in theM-com-

plete setting. For instance, in both the small sample and large samples, model 12

stands out in terms of model weights, along with model 15. To wit, model 15

does not attain almost 100% weight as it does in theM-closed setting. Different

from BS and BHS, PBMA, and PBMA+ assign the vast majority of weights to

model 15. For instance, the weights assigned to model 15 are not 100% in the

small sample case when the between-group standard deviation = 1.667, even

though they are very close to 1.00. However, as the between-group variability

increases, the weights assigned to model 15 by PBMA and PBMA+ are close

to 100% again for both small samples and large samples. Therefore, we antici-

pate that if the sample size approaches infinity, the weights assigned to model

15 using these two methods will approach to one. As for BHS, both model 12

and model 15 obtain noticeable weights when N = 500 and N = 4,500. Unlike the

other three methods, BS assigns different proportions of weights to each model.

That is, all of the fifteen models obtain non-zero weights and there is no promi-

nent model. Noticed that we set r to be 5, which is not a large number.

Therefore, we anticipate there will be larger variability in model weights if we

increase the error variance.

FIGURE 1. Model weights across different sample sizes with different levels of between-

group variability inM-closed settings.
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Predictive Performance

After examining the difference in model weights, in this section, we compare

the predictive performance for different weighting methods in Bayesian stack-

ing. Figures 3 and 4 are the boxplots that summarize the distribution of the KLD

obtained from all four Bayesian stacking methods in M-closed and M-com-

plete settings, respectively. In Figure 3, we can see that there is not much differ-

ence in terms of the average KLD for all the methods across sample sizes at

different between-group variability levels. All of the KLD is close to zero with

small variability, which indicates that BS, BHS, PBMA, and PBMA+ have

almost the same but good prediction capacity in theM-closed setting. While the

KLD obtained from PBMA and PBMA+ have almost no variability, there are

some extreme cases in the KLD obtained from BS and BHS. This is more obvi-

ous when the between-group standard deviation is equal to 1.667 in the small

sample sizes. However, these extreme KLDs are still very small, which does not

change our conclusion that the predictive performance of all these four Bayesian

stacking methods is identical inM-closed setting.

In M-complete setting, as shown in Figure 4, BS yields the highest KLD

compared to the others in all the samples with different levels of the between-

group variability. The standard deviation of the KLD obtained from BS is also

the largest. By contrast, BHS, PBMA, and PBMA+ are comparable in terms of

predictive capacity. To be precise, as the between-group variability increases

FIGURE 2. Model weights across different sample sizes with different levels of between-

group variability inM-complete setting.
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from 1.667 to 2.041, and 5, the variability in KLD obtained by these three meth-

ods becomes smaller in both small samples and large samples. In addition, BHS,

PBMA, and PBMA+ achieve lower KLD compared to BS. Therefore, we con-

clude that in the M-complete setting, BHS, PBMA, and PBMA+ outperform

BS in prediction. In addition, the variability for all the Bayesian stacking meth-

ods becomes smaller as the between-group variability increases. Furthermore,

Figure 4 does not show a large difference in terms of KLD between the large

and small sample sizes. However, this might be due to the small value we set for

r, which is only five in this simulation. Therefore, we anticipate that the varia-

bility of KLD will increase if we increase r for the individual errors. Overall, in

the M-closed setting, there is not much difference in prediction using all four

weighing methods in Bayesian stacking. However, in the M-complete setting,

BS has the poorest predictive capacity, while the other three are comparable. It

is important to note that the calculation of the KLD was based on the average

model weights at the sample level. To wit, we did not compare their predictive

capacity at the individual level, which is left to be investigated in the future.

Conclusion and Discussion

This paper examined different weighting schemes in Bayesian stacking for

large-scale assessment data with a multilevel structure across three M frame-

works. Four methods were investigated, including original BS, BHS, PBMA,

and PBMA+ . Unlike the BS method, which is not fully Bayesian, BHS not

FIGURE 3. Boxplot of Kullback–Leibler divergence across different sample sizes with

different levels of between-group variability inM-closed setting.

Huang and Kaplan

18



only incorporates predictor-dependent weighting but also adds priors and hyper-

priors to the weights, which allows for more flexibility in predicting outcomes

of interest. For instance, we have shown in the empirical study that BHS assigns

distinct model weights to different students while the other three methods assign

the same model weights to the entire sample. Broadly speaking, although the

predictive accuracy as measured by KLD among the different weighing schemes

does not appear to be very large, we still find that their predictive performance

varies depending on the underlyingM-framework (here assessed via the scalar

assigned to the error term, r) and the between-group variability. Given that

BHS, PBMA, and PBMA+ have lower KLD compared to BS, we would rec-

ommend one consider using the three methods and try to avoid using BS for the

prediction problem in multilevel data.

To be precise, in the M-open setting of our empirical example, PBMA

obtains the lowest KLD, indicating the best predictive capacity. BHS does not

provide optimal predictive performance in the small sample condition. We

speculated that this may be due to a sensitivity to the choice of hyperpriors

attached to the weight function in small samples and recommended sensitivity

analyses. In contrast, BHS and PBMA seem to provide relatively equivalent

performance in the large sample condition. Our simulation studies, in contrast,

mimic the M-closed and M-complete setting. In the M-closed setting, all of

the methods obtain approximately zero KLD and assign more or less 100%

weight on the true DGM, as expected, whereas in the M-complete setting, the

predictive performance of BHS, PBMA, and PBMA+ are comparable while

FIGURE 4. Boxplot of Kullback–Leibler divergence across different sample sizes with

different levels of between-group variability inM-complete setting.
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BS yields the highest KLD. Therefore, we anticipate that as the between-group

standard deviation and r for the Gaussian noise increase, BHS, PBMA, and

PBMA+ will demonstrate even better predictive performance in comparison

with the other methods. For instance, adding more layers in the multilevel struc-

ture, such as a three-level hierarchy, or more complex group relationships, such

as crossed random effects, could increase the between-group variability.

Another option would be varying r in the simulation study to examine which

weighting methods in Bayesian stacking will obtain the best predictive perfor-

mance when there are different amounts of noise in the M-complete setting.

Considering the computation efficiency, in the empirical study, the time used to

implement BS, PBMA, and PBMA+ are close to each other. BHS takes a little

longer time than the others, which might be due to the large value we set for

the iteration (10,000). However, the computation time of BHS is close to

PBMA and PBMA+ in the simulation study. Noticing that we use High

Throughput Computing (Center for High Throughput Computing, 2006) to

implement the simulation study, which optimizes the computation efficiency in

general, the algorithmic performance of these four methods will still be a ques-

tion for future study.

There are several limitations in this study, and thus, there are different direc-

tions for future research. Of course, our simulation study is not exhaustive, but

we believe that the models and conditions that we have chosen are in line with

the applications of multilevel models to large-scale assessments. Nevertheless,

extensions of our study may be useful. First, we applied the same hyperpriors

that Yao et al. (2021) used in their paper. Therefore, it would be useful to

explore how different priors and hyperpriors affect predictive performance

using BHS. Second, the value we set to regularize the Gaussian noise for the

M-complete setting is small and a bit arbitrary. For example, a follow-up study

could focus on examining how the predictive performance of these four meth-

ods change if we vary the in the future. Third, in this study, we used parametric

regression methods to model the weights in BHS. In the future, it may be inter-

esting to use non-parametric methods to compute the weights for different pre-

dictors might lead to more flexibility without relying on parametric

assumptions. A fourth limitation derives from specific issues associated with

the construction of large-scale assessments. Specifically, although the present

paper investigated the performance of various stacking weights for multilevel

models, the full utility of stacking for large-scale assessments will require incor-

porating the full complement of plausible values as well as sampling weights.

Finally, the data structure we investigated in this study has fixed group member-

ships, which is not always the case in large-scale assessments. Thus, it will be

interesting to explore stacking methods with more complicated data structures

of relevance to education research, such as multiple membership models.
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To conclude, a number of approaches now exist to address the problem of

model uncertainty with applications to the social and behavioral sciences, and

although Bayesian model averaging remains a prevalent and often adequate pro-

cedure for addressing model uncertainty, it rests on theM� closed assumption

that analysts may feel uncomfortable holding. Bayesian stacking methods relax

this assumption, and a variety of choices for stacking weights are available and

easily implemented through open-source software. For this study, we examined

a variety of stacking methods for multilevel models applied to large-scale edu-

cational assessments. Overall, BHS, PBMA, and PBMA+ have advantages

under different conditions and generally have better predictive capacity than

BS. We also found Bayesian hierarchical stacking to be a promising approach

for calculating stacking weights at the individual levels. It would be interesting

to extend the current study, as described above, to investigate different aspects

of Bayesian stacking in the future study.

Appendix

TABLE A1.

PISA 2018 Predictors of Reading Scores.

Variable name Variable label

FEMALE Sex (1 = Female)
ESCS Index of economic, social, and cultural status
METASUM Meta-cognition: summarizing
PERFEED Perceived feedback
HOMEPOS Home possessions
ADAPTIVE Adaptive instruction
TEACHINT Perceived teacher’s interest
ICTRES ICT resources
JOYREAD Joy/Like reading
COMPETE Competitiveness
WORKMAST Work mastery
GFOFAIL General fear of failure
SWBP Subjective well-being: Positive affect
MASTGOAL Mastery goal orientation
BELONG Subjective well-being: Sense of belonging to school
SCREADCOMP Perception of reading competence
SCREADDIFF Perception of reading difficulty
PISADIFF Perception of difficulty of the PISA test
PV1READ First plausible value reading score
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Notes

1. Gelman and Rubin (1995) have also argued against the use of posterior model prob-

abilities for model selection in the context of Bayes factors.

2. The widely applicable information criterion (WAIC) has also been advocated for

model selection. Although the WAIC and LOO-CV are asymptotically equivalent

(Watanabe, 2010), the implementation of LOO-CV in the loo package is more robust

in finite samples with weak priors or influential observations (Vehtari et al., 2017).
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