
650  	

The history of structural equation modeling (SEM) 
can be roughly divided into two generations. The first 
generation of structural equation modeling began with 
the initial merging of confirmatory factor analysis 
(CFA) and simultaneous equation modeling (see, e.g., 
Jöreskog, 1973). In addition to these founding concepts, 
the first generation of SEM witnessed important meth-
odological developments in handling nonstandard con-
ditions of the data. These developments included meth-
ods for dealing with non-normal data, missing data, 
and sample size sensitivity problems (see, e.g., Kaplan, 
2009). The second generation of SEM could be broadly 
characterized by another merger; this time, combining 
models for continuous latent variables developed in the 
first generation with models for categorical latent vari-
ables (see Muthén, 2001). The integration of continuous 
and categorical latent variables into a general modeling 
framework was due to the extension of finite mixture 
modeling to the SEM framework. This extension has 
provided an elegant theory, resulting in a marked in-
crease in important applications. These applications in-
clude, but are not limited to, methods for handling the 
evaluation of interventions with noncompliance (Jo & 
Muthén, 2001), discrete-time mixture survival models 
(Muthén & Masyn, 2005), and models for examining 
unique trajectories of growth in academic outcomes 
(Kaplan, 2003). A more comprehensive review of the 

history of SEM can be found in Matsueda (Chapter 2, 
this volume).

A parallel development to first- and second-generation 
SEM has been the expansion of Bayesian methods for 
complex statistical models, including structural equa-
tion models. Early papers include Lee (1981), Martin 
and McDonald (1975), and Scheines, Hoijtink, and 
Boomsma (1999). A recent book by Lee (2007) pro-
vides an up-to-date review and extensions of Bayesian 
SEM. Most recently, B. Muthén and Asparouhov (in 
press) demonstrate the wide range of modeling flex-
ibility within Bayesian SEM. The increased use of 
Bayesian tools for statistical modeling has come about 
primarily as a result of progress in computational algo-
rithms based on Markov chain Monte Carlo (MCMC) 
sampling. The MCMC algorithm is implemented in 
software programs such as WinBUGS (Lunn, Thomas, 
Best, & Spiegelhalter, 2000), various packages within 
the R archive (R Development Core Team, 2008), and 
most recently Mplus (Muthén & Muthén, 2010).

The purpose of this chapter is to provide an accessi-
ble introduction to Bayesian SEM as an important alter-
native to conventional frequentist approaches to SEM. 
However, to fully realize the utility of the Bayesian ap-
proach to SEM, it is necessary to demonstrate not only 
its applicability to first-generation SEM but also how 
Bayesian methodology can be applied to models char-
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acterizing the second generation of SEM. Although ex-
amples of Bayesian SEM relevant to first- and second-
generation models will be provided, an important goal 
of this chapter is to develop the argument that MCMC 
is not just another estimation approach to SEM, but that 
Bayesian methodology provides a coherent philosophi-
cal alternative to conventional SEM practice, regardless 
of whether models are “first” or “second” generation.

The organization of this chapter is as follows. To 
begin, the previous chapters in this volume provide a 
full account of basic and advanced concepts in both 
first- and second-generation SEM, and we assume that 
the reader is familiar with these topics. Given that as-
sumption, the next section provides a brief introduction 
to Bayesian ideas, including Bayes’ theorem, the nature 
of prior distributions, description of the posterior dis-
tribution, and Bayesian model building. Following that, 
we provide a brief overview of MCMC sampling that 
we use for the empirical examples in this chapter. Next, 
we introduce the general form of the Bayesian structur-
al equation model. This is followed by three examples 
that demonstrate the applicability of Bayesian SEM: 
Bayesian CFA, Bayesian multilevel path analysis, and 
Bayesian growth mixture modeling. Each example uses 
the MCMC sampling algorithm in Mplus (Muthén & 
Muthén, 2010). The chapter closes with a general dis-
cussion of how the Bayesian approach to SEM can lead 
to a pragmatic and evolutionary development of knowl-
edge in the social and behavioral sciences.

Brief Overview of Bayesian 
Statistical Inference

The goal of this section is to briefly present basic ideas 
in Bayesian inference to set the framework for Bayesian 
SEM, and follows closely the recent overview by Ka-
plan and Depaoli (in press). A good introductory treat-
ment of the subject can be found in Hoff (2009).

To begin, denote by Y a random variable that takes 
on a realized value y. For example, a person’s socio-
economic status could be considered a random variable 
taking on a very large set of possible values. In the con-
text of SEM, Y could be vector-valued, such as items 
on an attitude survey. Once the person responds to the 
survey items, Y becomes realized as y. In a sense, Y is 
unobserved—it is the probability distribution of Y that 
we wish to understand from the actual data values y.

Next, denote by q a parameter that we believe char-
acterizes the probability model of interest. The param-

eter q can be a scalar, such as the mean or the variance 
of a distribution, or it can be vector valued, such as the 
set of all structural model parameters, which later in 
the chapter we denote using the boldface q.

We are concerned with determining the probability 
of observing y given unknown parameters q, which we 
write as p(y | q). In statistical inference, the goal is to 
obtain estimates of the unknown parameters given the 
data. This is expressed as the likelihood of the param-
eters given the data, denoted as L(q | y). Often we work 
with the log-likelihood, written as l(q | y).

The key difference between Bayesian statistical in-
ference and frequentist statistical inference concerns 
the nature of the unknown parameters q. In the fre-
quentist tradition, the assumption is that q is unknown 
but fixed. In Bayesian statistical inference, q is random, 
possessing a probability distribution that reflects our 
uncertainty about the true value of q. Because both 
the observed data y and the parameters q are assumed 
random, we can model the joint probability of the pa-
rameters and the data as a function of the conditional 
distribution of the data given the parameters, and the 
prior distribution of the parameters. More formally,

	 p(q, y) = p(y | q)p(q)	 (38.1)

Because of the symmetry of joint probabilities,

	 p(y | q)p(q) = p(q | y)p(y)	 (38.2)

Therefore,

	 	 (38.3)

where p(q | y) is referred to as the posterior distribution 
of the parameters q given the observed data y. Thus, 
from Equation 38.3, the posterior distribution of q given 
y is equal to the data distribution p(y | q) times the prior 
distribution of the parameters p(q) normalized by p(y) 
so that the distribution integrates to one. Equation 38.3 
is Bayes’ theorem. For discrete variables

	 	 (38.4)

and for continuous variables

	 	 (38.5)
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As earlier, the denominator in Equation 38.3 does not 
involve model parameters, so we can omit the term and 
obtain the unnormalized posterior distribution

	 p(q | y) ∝ p(y | q)p(q)	 (38.6)

Consider the data distribution p(y | q) on the right 
hand side of Equation 38.6. When expressed in terms 
of the unknown parameters q for fixed values of y, this 
term is the likelihood L(q | y), which we mentioned ear-
lier. Thus, Equation 38.6 can be rewritten as

	 p(q | y) ∝ L(q | y)p(q)	 (38.7)

Equation 38.6 represents the core of Bayesian statis-
tical inference and is what separates Bayesian statistics 
from frequentist statistics. Specifically, Equation 38.6 
states that our uncertainty regarding the parameters of 
our model, as expressed by the prior distribution p(q), 
is weighted by the actual data p(y | q) (or equivalently, 
L[q | y]), yielding an updated estimate of the model 
parameters, as expressed in the posterior distribution 
p(q | y).

Types of Priors

The distinguishing feature of Bayesian inference is 
the specification of the prior distribution for the model 
parameters. The difficulty arises in how a researcher 
goes about choosing prior distributions for the model 
parameters. We can distinguish between two types of 
priors, (1) noninformative and (2) informative priors, 
based on how much information we believe we have 
prior to data collection and how accurate we believe 
that information to be.

Noninformative Priors

In some cases we may not be in possession of enough 
prior information to aid in drawing posterior inferences. 
From a Bayesian perspective, this lack of information 
is still important to consider and incorporate into our 
statistical specifications. In other words, it is equally as 
important to quantify our ignorance as it is to quantify 
our cumulative understanding of a problem at hand.

The standard approach to quantifying our ignorance 
is to incorporate a noninformative prior into our speci-
fication. Noninformative priors are also referred to as 
“vague” or “diffuse” priors. Arguably, the most com-
mon noninformative prior distribution is the uniform 

distribution over some sensible range of values. Care 
must be taken in the choice of the range of values over 
the uniform distribution. Specifically, a uniform [–∞, 
∞] would be an improper prior distribution insofar as it 
does not integrate to 1.0 as required of probability dis-
tributions. Another type of noninformative prior is the 
so-called “Jeffreys’ prior,” which handles some of the 
problems associated with uniform priors. An impor-
tant treatment of noninformative priors can be found 
in Press (2003).

Informative Priors

In many practical situations, there may be sufficient 
prior information on the shape and scale of the distribu-
tion of a model parameter that it can be systematically 
incorporated into the prior distribution. Such priors are 
referred to as “informative.” One type of informative 
prior is based on the notion of a “conjugate prior” dis-
tribution, which is one that, when combined with the 
likelihood function, yields a posterior distribution that 
is in the same distributional family as the prior distri-
bution. This is a very important and convenient feature 
because if a prior is not conjugate, the resulting poste-
rior distribution may have a form that is not analytically 
simple to solve. Arguably, the existence of numerical 
simulation methods for Bayesian inference, such as 
MCMC sampling, may render nonconjugacy less of a 
problem.

Point Estimates of the Posterior Distribution

Bayes’ theorem shows that the posterior distribution is 
composed of encoded prior information weighted by 
the data. With the posterior distribution in hand, it is 
of interest to obtain summaries of the distribution—
such as the mean, mode, and variance. In addition, in-
terval summaries of the posterior distribution can be 
obtained. Summarizing the posterior distribution pro-
vides the necessary ingredients for Bayesian hypoth-
esis testing. In the general case, the expressions for the 
mean and variance of the posterior distribution come 
from expressions for the mean and variance of condi-
tional distributions generally. Specifically, for the con-
tinuous case, the mean of the posterior distribution can 
be written as

	 	 (38.8)( | ) ( | )E y p y d
+∞

−∞

θ = θ θ θ∫
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and is referred to as the expected a posteriori or EAP 
estimate. Thus, the conditional expectation of q is ob-
tained by averaging over the marginal distribution of y. 
Similarly, the conditional variance of q can be obtained 
as (see Gill, 2002)

	 var(q | y) = E[(q – E[(q | y])2 | y)

	       = E(q2 | y) – E(q | y)2 	 (38.9)

The conditional expectation and variance of the pos-
terior distribution provide two simple summary values 
of the distribution. Another summary measure would 
be the mode of the posterior distribution. Those mea-
sures, along with the quantiles of the posterior distri-
bution, provide a complete description of the distribu-
tion.

Credibility Intervals

One important consequence of viewing parameters 
probabilistically concerns the interpretation of “confi-
dence intervals.” Recall that the frequentist confidence 
interval is based on the assumption of a very large 
number of repeated samples from the population char-
acterized by a fixed and unknown parameter m. For any 
given sample, we obtain the sample mean x and form, 
for example, a 95% confidence interval. The correct 
frequentist interpretation is that 95% of the confidence 
intervals formed this way capture the true parameter 
m under the null hypothesis. Notice that from this per-
spective, the probability that the parameter is in the in-
terval is either zero or one.

In contrast, the Bayesian perspective forms a “cred-
ibility interval” (also known as a “posterior probability 
interval”). Again, because we assume that a parameter 
has a probability distribution, when we sample from 
the posterior distribution of the model parameters, we 
can obtain its quantiles. From the quantiles, we can 
directly obtain the probability that a parameter lies 
within a particular interval. So in this example, a 95% 
credibility interval means that the probability that the 
parameter lies in the interval is 0.95. Notice that this 
is entirely different from the frequentist interpretation, 
and arguably aligns with common sense.

Formally, a 100(1 – a)% credibility interval for a 
particular subset of the parameter space q is defined as

	 	 (38.10) 

Highest Posterior Density

The simplicity of the credibility interval notwithstand-
ing, it is not the only way to provide an interval esti-
mate of a parameter. Following the argument set down 
by Box and Tiao (1973), when considering the poste-
rior distribution of a parameter q, there is a substantial 
part of the region of that distribution where the den-
sity is quite small. It may be reasonable, therefore, to 
construct an interval in which every point inside has a 
higher probability than any point outside the interval. 
Such a construction is referred to as the highest prob-
ability density (HPD) interval. More formally,

Definition 1
Let p(q | y) be the posterior probability density 
function. A region R of the parameter space q is 
called the HPD region of the interval 1 – a if
1.	 P(q ∈ R | y) = 1 – a
2.	 For q1 ∈ R and q2 ∉ R, p(q1 | y) ≥ p(q2 | y).

In words, the first part says that given the data y, the 
probability is that q is in a particular region defined as 
1 – a, where a is determined ahead of time. The second 
part says that for two different values of q, denoted as 
q1 and q2, if q1 is in the region defined by 1 – a, but q2 
is not, then q1 has a higher probability than q2 given the 
data. Note that for unimodal and symmetric distribu-
tions, such as the uniform distribution or the normal 
distribution, the HPD is formed by choosing tails of 
equal density. The advantage of the HPD arises when 
densities are not symmetric and/or are not unimodal. 
In fact, this is an important property of the HPD and 
sets it apart from standard credibility intervals. Follow-
ing Box and Tiao (1973), if p(q | y) is not uniform over 
every region in q, then the HPD region 1 – a is unique. 
Also if p(q1 | y) = p(q2 | y), then these points are included 
(or excluded) by a 1 – a HPD region. The opposite is 
true as well, namely, if p(q1 | y) ≠ p(q2 | y), then a 1 – a 
HPD region includes one point but not the other (Box 
& Tiao, 1973, p. 123).

Bayesian Model Evaluation 
and Comparison

SEM, by its very nature, involves the specification, esti-
mation, and testing of models that purport to represent 
the underlying structure of data. In this case, SEM is 

1 ( | )
C

p x d− a = θ θ∫
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not only a noun describing a broad class of method-
ologies, but it is also a verb—an activity on the part of 
a researcher to describe and analyze a phenomenon of 
interest. The chapters in this handbook have described 
the nuances of SEM from the frequentist domain—
with many authors attending to issues of specifica-
tion, power, and model modification. In this section, 
we consider model evaluation and comparison from 
the Bayesian perspective. We focus on two procedures 
that are available in Mplus, namely, posterior predictive 
checking along with posterior predictive p-values as a 
means of evaluating the quality of the fit of the model 
(see, e.g., Gelman, Carlin, Stern, & Rubin, 2003), and 
the deviance information criterion for the purposes of 
model comparison (Spiegelhalter, Best, Carlin, & van 
der Linde, 2002). We are quick to note, however, that 
these procedures are available in WinBUGS as well as 
various programs within the R environment such as 
LearnBayes (Albert, 2007) and MCMCpack (Martin, 
Quinn, & Park, 2010).

Posterior Predictive Checks

The general idea behind posterior predictive check-
ing is that there should be little, if any, discrepancy 
between data generated by the model, and the actual 
data itself. In essence, posterior predictive checking is 
a method for assessing the specification quality of the 
model from the viewpoint of predictive accuracy. Any 
deviation between the model-generated data and the ac-
tual data suggests possible model misspecification.

Posterior predictive checking utilizes the posterior 
predictive distribution of replicated data. Following 
Gelman and colleagues (2003), let yrep be data repli-
cated from our current model. That is,

	 	 (38.11)

                                   
rep( | ) ( | ) ( )p y p y p d= θ θ θ θ∫

Notice that the second term, p(q | y), on the right-hand 
side of Equation 38.11 is simply the posterior distribu-
tion of the model parameters. In words, Equation 38.11 
states that the distribution of future observations given 
the present data, p(yrep | y), is equal to the probability 
distribution of the future observations given the param-
eters, p(yrep | q), weighted by the posterior distribution 
of the model parameters. Thus, posterior predictive 
checking accounts for both the uncertainty in the model 
parameters and the uncertainty in the data.

As a means of assessing the fit of the model, poste-
rior predictive checking implies that the replicated data 
should match the observed data quite closely if we are 
to conclude that the model fits the data. One approach 
to quantifying model fit in the context of posterior pre-
dictive checking incorporates the notion of Bayesian 
p-values. Denote by T(y) a model test statistic based 
on the data, and let T(yrep) be the same test statistic but 
defined for the replicated data. Then, the Bayesian p-
value is defined to be

	 p-value = pr(T(yrep) ≥ T(y) | y)	 (38.12)

Equation 38.12 measures the proportion of test statis-
tics in the replicated data that exceeds that of the actual 
data. We will demonstrate posterior predictive check-
ing in our examples.

Bayes Factors

As suggested earlier in this chapter, the Bayesian frame-
work does not adopt the frequentist orientation to null 
hypothesis significance testing. Instead, as with poste-
rior predictive checking, a key component of Bayesian 
statistical modeling is a framework for model choice, 
with the idea that the model will be used for predic-
tion. For this chapter, we will focus on Bayes factors, 
the Bayesian information criterion, and the deviance 
information criterion as methods for choosing among 
a set of competing models. The deviance information 
criterion will be used in the subsequent empirical ex-
amples.

A very simple and intuitive approach to model build-
ing and model selection uses so-called “Bayes factors” 
(Kass & Raftery, 1995). An excellent discussion of 
Bayes factors and the problem of hypothesis testing 
from the Bayesian perspective can be found in Raftery 
(1995). In essence, the Bayes factor provides a way to 
quantify the odds that the data favor one hypothesis 
over another. A key benefit of Bayes factors is that mod-
els do not have to be nested.

To begin, consider two competing models, denoted 
as M1 and M2, that could be nested within a larger space 
of alternative models. For example, these could be two 
regression models with a different number of variables, 
or two structural equation models specifying very dif-
ferent directions of mediating effects. Further, let q1 and 
q2 be two parameter vectors. From Bayes’ theorem, the 
posterior probability that, say, M1, is the correct model 
can be written as

rep rep( | ) ( | ) ( | )p y y p y p y d= θ θ θ∫
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	 	 (38.13)

Notice that p(y | M1) does not contain model parameters 
q1. To obtain p(y | M1) requires integrating over q1. That 
is

	 	 (38.14)

where the terms inside the integral are the likelihood 
and the prior, respectively. The quantity p(y | M1) has 
been referred to as the “integrated likelihood” for 
model M1 (Raftery, 1995). Perhaps a more useful term 
is the “predictive probability of the data” given M1. A 
similar expression can be written for M2.

With these expressions, we can move to the com-
parison of our two models, M1 and M2. The goal is to 
develop a quantity that expresses the extent to which 
the data support M1 over M2. One quantity could be the 
posterior odds of M1 over M2, expressed as

	 	 (38.15)

Notice that the first term on the right-hand side of Equa-
tion 38.15 is the ratio of two integrated likelihoods. This 
ratio is referred to as the “Bayes factor” for M1 over 
M2, denoted here as B12. In line with Kass and Raftery 
(1995, p. 776), our prior opinion regarding the odds of 
M1 over M2, given by p(M1)/p(M2), is weighted by our 
consideration of the data, given by p(y | M1)/p(y | M2). 
This weighting gives rise to our updated view of evi-
dence provided by the data for either hypothesis, de-
noted as p(M1 | y)/p(M2 | y). An inspection of Equation 
38.15 also suggests that the Bayes factor is the ratio of 
the posterior odds to the prior odds.

In practice, there may be no prior preference for one 
model over the other. In this case, the prior odds are 
neutral and p(M1) = p(M2) = 1/2. When the prior odds 
ratio equals 1, then the posterior odds is equal to the 
Bayes factor.

The Bayesian Information Criterion

A popular measure for model selection used in both 
frequentist and Bayesian applications is based on an ap-
proximation of the Bayes factor and is referred to as the 
“Bayesian information criterion” (BIC), also called the 
“Schwarz criterion” (Schwarz, 1978). A detailed math-

ematical derivation for the BIC can be found in Raftery 
(1995), who also examines generalizations of the BIC 
to a broad class of statistical models.

Under conditions where there is little prior informa-
tion, Raftery (1995) has shown that an approximation 
of the Bayes factor can be written as

	 BIC = –2 log(θ̂ | y) + q log(n)	 (38.16)

where –2 log (θ̂ | y) describes model fit, while q log(n) is 
a penalty for model complexity, q represents the num-
ber of variables in the model, and n is the sample size.

As with Bayes factors, the BIC is often used for 
model comparisons. Specifically, the difference be-
tween two BIC measures comparing, say, M1 to M2 can 
be written as

	 	 (38.17)

Rules of thumb have been developed to assess the 
quality of the evidence favoring one hypothesis over 
another using Bayes factors and the comparison of BIC 
values from two competing models. Following Kass 
and Raftery (1995, p. 777) and using M1 as the refer-
ence model,

BIC difference Bayes factor Evidence against M2

0 to 2 1 to 3 Weak

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

> 10 > 150 Very strong

The Deviance Information Criterion (DIC)

Although the BIC is derived from a fundamentally 
Bayesian perspective, it is often productively used for 
model comparison in the frequentist domain. Recently, 
however, an explicitly Bayesian approach to model com-
parison was developed by Spiegelhalter and colleagues 
(2002) based on the notion of Bayesian deviance.

Consider a particular probability model for a set of 
data, defined as p(y | q). Then, Bayesian deviance can 
be defined as

	 D(q) = –2 log[p(y | q)] + 2 log[h(y)]	 (38.18)

1 1
1

1 1 2 2

( | ) ( )( | )
( | ) ( ) ( | ) ( )

p y M p Mp M y
p y M p M p y M p M

=
+

1 1 1 1 1 1( | ) ( | , ) ( | )p y M p y M p M d= θ θ θ∫

1 1 1

2 2 2

( | ) ( | ) ( )
( | ) ( | ) ( )

p M y p y M p M
p M y p y M p M

 
= ×  

 

1 212 ( ) ( )

1 2 1 2

(BIC ) BIC BIC

1ˆ ˆlog( | ) log( | ) ( ) log( )
2

M M

y y q q n

D = −

= θ − θ − −



656  	 V .  AD  V ANC   E D  A P P LICATION        S

where, according to Spielgelhalter and colleagues 
(2002), the term h(y) is a standardizing factor that does 
not involve model parameters and thus is not involved 
in model selection. Note that although Equation 38.18 
is similar to the BIC, it is not, as currently defined, an 
explicit Bayesian measure of model fit. To accomplish 
this, we use Equation 38.18 to obtain a posterior mean 
over q by defining

	 DIC = Eq{–2 log[p(y | q) | y] + 2 log[h(y)}	 (38.19)

Similar to the BIC, the model with the smallest DIC 
among a set of competing models is preferred.

Brief Overview of MCMC Estimation

As stated in the introduction, the key reason for the in-
creased popularity of Bayesian methods in the social 
and behavioral sciences has been the advent of pow-
erful computational algorithms now available in pro-
prietary and open-source software. The most common 
algorithm for Bayesian estimation is based on MCMC 
sampling. A number of very important papers and 
books have been written about MCMC sampling (see, 
e.g., Gilks, Richardson, & Spiegelhalter, 1996). Suffice 
it to say, the general idea of MCMC is that instead of 
attempting to analytically solve for the moments and 
quantiles of the posterior distribution, MCMC instead 
draws specially constructed samples from the posterior 
distribution p(q | y) of the model parameters.

The formal algorithm can be specified as follows. 
Let q be a vector of model parameters with elements 
q = (q1, . . . , qq)′. Note that information regarding q is 
contained in the prior distribution p(q). A number of 
algorithms and software programs are available to con-
duct MCMC sampling. For the purposes of this chapter, 
we use the Gibbs sampler (Geman & Geman, 1984) as 
implemented in Mplus (Muthén & Muthén, 2010). Fol-
lowing the description given in Hoff (2009), the Gibbs 
sampler begins with an initial set of starting values for 
the parameters, denoted as q(0) = ( (0)

1θ , . . . , (0)
qθ )′. Given 

this starting point, the Gibbs sampler generates q(s) 
from q(s–1) as follows:

1.  sample
( ) ( 1) ( 1) ( 1)
1 1 2 3( | , ,..., , )

s s s s
qp − − −θ θ θ θ θ y

2.  sample
( ) ( 1) ( 1) ( 1)
2 2 1 3( | , ,..., , )

s s s s
qp − − −θ θ θ θ θ y



q.  sample
( ) ( ) ( ) ( )

1 2 1( | , ,..., , )

s s s s
q q qp −θ θ θ θ θ y

where s = 1, 2, . . . , S are the Monte Carlo interations. 
Then, a sequence of dependent vectors is formed

 
 
	  
 

This sequence exhibits the so-called “Markov proper-
ty” insofar as q(s) is conditionally independent of { (0)

1θ , 
. . . 

( 2)s
q

−θ } given q(s–1). Under some general conditions, 
the sampling distribution resulting from this sequence 
will converge to the target distribution as S → ∞. See 
Gilks and colleagues (1996) for additional details on 
the properties of MCMC.

In setting up the Gibbs sampler, a decision must 
be made regarding the number of Markov chains to 
be generated, as well as the number of iterations of 
the sampler. With regard to the number of chains to 
be generated, it is not uncommon to specify multiple 
chains. Each chain samples from another location of 
the posterior distribution based on purposefully dispa-
rate starting values. With multiple chains it may be the 
case that fewer iterations are required, particularly if 
there is evidence for the chains converging to the same 
posterior mean for each parameter. Convergence can 
also be obtained from one chain, though often requir-
ing a considerably larger number of iterations. Once the 
chain has stabilized, the iterations prior to the stabili-
zation (referred to as the “burn-in” phase) are discard-
ed. Summary statistics, including the posterior mean, 
mode, standard deviation and credibility intervals, are 
calculated on the post-burn-in iterations.1

Convergence Diagnostics

Assessing the convergence of parameters within 
MCMC estimation is a difficult task that has received 
considerable attention in the literature (see, e.g., Sin-
haray, 2004). The difficulty of assessing convergence 
stems from the very nature of the MCMC algorithm 
because it is designed to converge in distribution rather 
than to a point estimate. Because there is not a single 
adequate assessment of convergence for this situation, it 
is common to inspect several different diagnostics that 
examine varying aspects of convergence conditions. 
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A variety of these diagnostics are reviewed and dem-
onstrated in Kaplan and Depaoli (in press), including 
the Geweke (1992) convergence diagnostic, the Heidel-
berger and Welch (1983) convergence diagnostic, and 
the Raftery and Lewis (1992) convergence diagnostic. 
These diagnostics can be used for the single-chain situ-
ation.

One of the most common diagnostics in a multiple-
chain situation is the Brooks, Gelman, and Rubin di-
agnostic (see, e.g., Gelman, 1996; Gelman & Rubin, 
1992a, 1992b). This diagnostic is based on analysis of 
variance and is intended to assess convergence among 
several parallel chains with varying starting values. 
Specifically, Gelman and Rubin (1992a) proposed a 
method where an overestimate and an underestimate 
of the variance of the target distribution are formed. 
The overestimate of variance is represented by the 
between-chain variance, and the underestimate is the 
within-chain variance (Gelman, 1996). The theory is 
that these two estimates would be approximately equal 
at the point of convergence. The comparison of between 
and within variances is referred to as the “potential 
scale reduction factor” (PSRF), and larger values typi-
cally indicate that the chains have not fully explored the 
target distribution. Specifically, a variance ratio that is 
computed with values approximately equal to 1.0 indi-
cates convergence. Brooks and Gelman (1998) added 
an adjustment for sampling variability in the variance 
estimates and also proposed a multivariate extension 
(MPSRF), which does not include the sampling vari-
ability correction. The changes by Brooks and Gelman 
reflect the diagnostic as implemented in Mplus (Muthén 
& Muthén, 2010).

Specification of Bayesian SEM

Following general notation, denote the measurement 
model as

	 y = a + Lh + Kx + e	 (38.20)

where y is a vector of manifest variables, a is a vector 
of measurement intercepts, L is a factor loading matrix, 
h is a vector of latent variables, K is a matrix of re-
gression coefficients relating the manifest variables y to 
observed variables x, and e is a vector of uniquenesses 
with covariance matrix X, assumed to be diagonal. The 
structural model relating common factors to each other 

and possibly to a vector of manifest variables x is writ-
ten as

	 h = n + Bh + Gx + z	 (38.21)

where n is a vector of structural intercepts, B and G 
are matrices of structural coefficients, and z is a vec-
tor of structural disturbances with covariance matrix 
Y, which is assumed to be diagonal.

Conjugate Priors for SEM Parameters

To specify the prior distributions, it is notationally 
convenient to arrange the model parameters as sets of 
common conjugate distributions. Parameters with the 
subscript ‘norm’ follow a normal distribution, while 
those with the subscript ‘IW’ follow an inverse-Wishart 
distribution. Let qnorm = {a, n, L, B, G, K} be the vector 
of free model parameters that are assumed to follow a 
normal distribution, and let qIW = {X, Y} be the vector 
of free model parameters that are assumed to follow the 
inverse-Wishart distribution. Formally, we write

	q norm ~ N(m, W)	 (38.22)

where m and W are the mean and variance hyperpara
meters, respectively, of the normal prior. For blocks of 
variances and covariances in X and Y, we assume that 
the prior distribution is IW,2 that is,

	q IW ~ IW (R, d)	 (38.23)

where R is a positive definite matrix, and d > q – 1, 
where q is the number of observed variables. Different 
choices for R and d will yield different degrees of “in-
formativeness” for the IW distribution.

In addition to the conventional SEM model param-
eters and their priors, an additional model parameter 
is required for the growth mixture modeling example 
given below. Specifically, it is required that we esti-
mate the mixture proportions, which we denote as p. 
In this specification, the class labels assigning an in-
dividual to a particular trajectory class follow a multi-
nomial distribution with parameters n, the sample size, 
and p is a vector of trajectory class proportions. The 
conjugate prior for trajectory class proportions is the 
Dirichlet(t) distribution with hyperparameters t = (t1, 
. . . ,tT ), where T is the number of trajectory classes and 

1
1

T

T =
=∑ .
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MCMC Sampling for Bayesian SEM

The Bayesian approach begins by considering h as 
missing data. Then, the observed data y are augmented 
with h in the posterior analysis. The Gibbs sampler 
then produces a posterior distribution [qn, qIW, h | y] via 
the following algorithm. At the (s + 1)th iteration, using 
current values of h(s), ( )

norm
sθ , and ( )

IW
sθ ,

1.  sample h(s+1) from ( ) ( )
norm IW( | , , )s sp  y (38.24)

2.  sample q( 1)s
n

+θ from ( ) ( 1)
norm IW( | , , )s sp y (38.25)

3.  sample q( 1)
IW
s+θ from ( 1) ( 1)

IW norm( | , , )s sp y (38.26)

In words, Equations 38.24–38.26 first require start 
values for q(0)

normθ  and q(0)
IWθ  to begin the MCMC generation. 

Then, given these current start values and the data y at 
iteration s, we generate h at iteration s + 1. Given the 
latent data and observed data, we generate estimates of 
the measurement model and structural model param-
eters in Equations 38.20 and 38.21, respectively. The 
computational details can be found in Asparouhov and 
Muthén (2010).

Three Examples of Bayesian SEM

This section provides three examples of Bayesian SEM. 
Example 1 presents a simple two-factor Bayesian CFA. 
This model is compared to an alternative model with 
only one factor. Example 2 presents an example of a 
multilevel path analysis with a randomly varying slope. 
Example 3 presents Bayesian growth mixture model-
ing.

Bayesian CFA

Data for this example is comprised of an unweighted 
sample of 665 kindergarten teachers from the fall as-
sessment of the Early Childhood Longitudinal Study—
Kindergarten (ECLS-K) class of 1998–1999 (National 
Center for Education Statistics [NCES], 2001). The 
teachers were given a questionnaire about different 
characteristics of the classroom and students. A portion 
of this questionnaire consisted of a series of Likert-type 
items regarding the importance of different student 
characteristics and classroom behavior. Nine of these 
items were chosen for this example. All items were 
scored based on a 5-point summative response scale re-

garding the applicability and importance of each item 
to the teacher.

For this example we presume to have strong prior 
knowledge of the factor loadings, but no prior knowl-
edge of the factor means, factor variances, and unique 
variances. For the factor loadings, strong prior knowl-
edge can be determined as a function of both the lo-
cation and the precision of the prior distribution. In 
particular, the mean hyperparameter would reflect the 
prior knowledge of the factor loading value (set at 0.8 in 
this example), and the precision of the prior distribution 
would be high (small variances of 0.01 were used here) 
to reflect the strength of our prior knowledge. As the 
strength of our knowledge decreases for a parameter, 
the variance hyperparameter would increase to reflect 
our lack of precision in the prior.

For the factor means, factor variances, and unique 
variances, we specified priors that reflected no prior 
knowledge about those parameters. The factor means 
were given prior distributions that were normal but 
contained very little precision. Specifically, the mean 
hyperparameters were set arbitrarily at 0, and the vari-
ance hyperparameters were specified as 1010 to in-
dicate no precision in the prior. The factor variances 
and unique variances also received priors reflecting 
no prior knowledge about those parameters. These 
variance parameters all received IW priors that were 
completely diffuse, as described in Asparouhov and 
Muthén (2010).

On the basis of preliminary exploratory factor analy-
ses, the CFA model in this example is specified to have 
two factors. The first factor contains two items related 
to the importance teachers place on how a student’s 
progress relates to other children. The items specifi-
cally address how a student’s achievements compare 
to other students in the classroom and also how they 
compare to statewide standards. The second factor 
comprises seven items that relate to individual charac-
teristics of the student. These items include the follow-
ing topics: improvement over past performance, overall 
effort, class participation, daily attendance, classroom 
behavior, cooperation with other students, and the abil-
ity to follow directions.

Parameter Convergence

A CFA model was estimated with 10,000 total it-
erations, 5,000 burn-in and 5,000 post-burn-in. This 
model converged properly as indicated by the Brooks 
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and Gelman (1998) (PSRF) diagnostic. Specifically, the 
estimated value for PSRF fell within a specified range 
surrounding 1.0. This model took less than 1 minute to 
compute.

Figure 38.1 presents convergence plots, posterior 
density plots, and autocorrelation plots (for both chains) 
for the factor loadings for items 2 and 4. Perhaps the 
most common form of assessing MCMC convergence 
is to examine the convergence (also called “history”) 

plots produced for a chain. Typically, a parameter will 
appear to converge if the sample estimates form a tight 
horizontal band across this history plot. This method is 
more likely to be an indicator of nonconvergence. It is 
typical to use multiple Markov chains, each with dif-
ferent starting values, to assess parameter convergence. 
For example, if two separate chains for the same pa-
rameter are sampling from different areas of the target 
distribution, there is evidence of nonconvergence. Like-

Item 2 Item 4

FIGURE 38.1.  CFA: Convergence, posterior densities, and autocorrelation plots for select parameters.
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wise, if a plot shows substantial fluctuation or jumps in 
the chain, it is likely the parameter has not reached con-
vergence. The convergence plots in Figure 38.1 exhibit 
a tight, horizontal band for both of the parameters pre-
sented. This tight band indicates the parameters likely 
converged properly.

Next, Figure 38.1 presents the posterior probability 
density plots that indicate the posterior densities for 
these parameters are approximating a normal density. 
The following two rows present the autocorrelation 
plots for each of the two chains. Autocorrelation plots 
illustrate the amount of dependence in the chain. These 
plots represent the post-burn-in phase of the respective 
chains. Each of the two chains for these parameters 
shows relatively low dependence, indicating that the es-
timates are not being impacted by starting values or by 
the previous sampling states in the chain.

The other parameters included in this model showed 
similar results of proper convergence, normal posterior 
densities, and low autocorrelations for both MCMC 
chains. Appendix 38.1 contains the Mplus code for this 
example.

Model Interpretation

Estimates based on the post-burn-in iterations for the 
final CFA model are presented in Table 38.1. The EAP 
estimates and standard deviations of the posterior dis-
tributions are provided for each parameter. The one-
tailed p-value based on the posterior distribution is also 
included for each parameter. If the parameter estimate 
is positive, this p-value represents the proportion of the 
posterior distribution that is below zero. If the parame-
ter estimate is negative, the p-value is the proportion of 
the posterior distribution that is above zero (B. Muthén, 
2010, p. 7). Finally, the 95% credibility interval is pro-
vided for each parameter. The first factor consisted of 
measures comparing the student’s progress to others, 
while the second factor consisted of individual student 
characteristics. Note that the first item on each factor 
was fixed to have a loading of 1.00 in order to set the 
metric of that factor.

The factor comparing the student’s progress to state 
standards has a high loading of 0.87. The factor mea-
suring individual student characteristics also had high 
factor loadings, ranging from 0.79 to 1.10 (unstan-
dardized). Note that although these are unstandard-
ized loadings, the Bayesian estimation framework can 
handle any form of standardization as well. Estimates 

for factor variances and covariances, factor means, and 
residual variances are also included in Table 38.1.

The one-sided p-values in Table 38.1 can aid in inter-
preting the credibility interval produced by the poste-
rior distribution. For example, in the case of the means 
for factor 1 and factor 2, the lower bound of the 95% 
credibility interval was negative and the upper bound 
was positive. The one-sided p-value indicates exactly 
what proportion of the posterior is negative and what 
proportion is positive. For the factor 1 mean, the p-val-
ue indicated that 13% of the posterior distribution fell 
below zero. Likewise, results for the factor 2 mean in-
dicated that 45% of the posterior distribution fell below 
zero. Overall, these p-values, especially for the factor 2 
mean, indicated that a large portion of the posterior dis-
tribution was negative even though the EAP estimate 
was positive.

Model Fit and Model Comparison

For this example, we illustrate posterior predictive 
checking (PPC) for model assessment, and the DIC 
for model choice. Specifically, PPC was demonstrated 
for the two-factor CFA model, and the DIC was used 
to compare the two-factor CFA model to a one-factor 
CFA model.

In Mplus, PPC uses the likelihood ratio chi-square 
test as the discrepancy function between the actual 
data and the data generated by the model. A posteri-
or predictive p-value is then computed based on this 
discrepancy function. Unlike the classical p-value, the 
Bayesian p-value takes into account the variability of 
the model parameters and does not rely on asymptotic 
theory (Asparouhov & Muthén, 2010, p. 28). As men-
tioned, the data generated by the model should closely 
match the observed data if the model fits. Specifically, 
if the posterior predictive p-value obtained is small, this 
is an indication of model misfit for the observed data. 
The PPC test also produces a 95% confidence interval 
for the difference between the value of the chi-square 
model test statistic for the observed sample data and 
that for the replicated data (Muthén, 2010).

Model fit was assessed by PPC for the original two-
factor CFA model presented earlier. The model was 
rejected based on the PPC test with a posterior predic-
tive p-value of .00, indicating that the model does not 
adequately represent the observed data. The 95% confi-
dence interval for the difference between the observed 
data test statistic and the replicated data test statistic 
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had a lower bound of 149.67 and an upper bound of 
212.81 (see Figure 38.2). Since the confidence interval 
for the difference in the observed and replicated data 
is positive, this indicates “that the observed data test 
statistic is much larger than what would have been gen-
erated by the model” (Muthén, 2010, p. 14).

Figure 38.2 illustrates the PPC plot and the corre-
sponding PPC scatterplot for the original two-factor 
model. The PPC distribution plot shows the distribution 
of the difference between the observed data test statis-
tic and the replicated data test statistic. In this plot, the 

observed data test statistic is marked by the y-axis line, 
which corresponds to a value of zero on the x-axis. The 
PPC scatterplot, also presented in Figure 38.2, has a 45 
degree line that helps to define the posterior predictive 
p-value. With all of the points below this line, this in-
dicates that the p-value (0.00) was quite small and the 
model can be rejected, indicating model misfit for the 
observed data. If adequate model fit had been observed, 
the points would be plotted along the 45 degree line in 
Figure 38.2, which would indicate a close match be-
tween the observed and the replicated data.

TABLE 38.1.  MCMC CFA Estimates: ECLS-K Teacher Survey

Parameter EAP SD p-value 95% credibility interval

Loadings: Compared to others
 C ompared to other children 1.00
 C ompared to state standards 0.87 0.07 0.00 0.73, 1.02

Loadings: Individual characteristics
 I mprovement 1.00
  Effort 0.79 0.05 0.00 0.70, 0.89
 C lass participation 1.09 0.06 0.00 0.97, 1.20
 D aily attendance 1.08 0.06 0.00 0.96, 1.20
 C lass behavior 1.10 0.05 0.00 1.00, 1.20
 C ooperation with others 1.10 0.05 0.00 1.00, 1.20
 F ollow directions 0.82 0.05 0.00 0.72, 0.91

Factor means
 F actor 1 mean 0.30 0.22 0.13 –0.07, 0.65
 F actor 2 mean 0.02 0.07 0.45 –0.08, 0.18

Factor variances and covariances
 F actor 1 variance 0.45 0.05 0.00 0.35, 0.55
 F actor 2 variance 0.14 0.01 0.00 0.12, 0.17
 F actor covariance 0.11 0.01 0.00 0.09, 0.14

Residual variances
 C ompared to other children 0.31 0.04 0.00 0.23, 0.39
 C ompared to state standards 0.60 0.05 0.00 0.52, 0.70
 I mprovement 0.28 0.02 0.00 0.25, 0.31
  Effort 0.21 0.01 0.00 0.18, 0.23
 C lass participation 0.27 0.02 0.00 0.23, 0.30
 D aily attendance 0.29 0.02 0.00 0.26, 0.33
 C lassroom behavior 0.16 0.01 0.00 0.13, 0.18
 C ooperation with others 0.17 0.01 0.00 0.14, 0.19
 F ollow directions 0.18 0.01 0.00 0.16, 0.20
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As an illustration of model comparison, the original 
two-factor model was compared to a one-factor model. 
The DIC value produced for the original two-factor 
CFA model was 10,533.37. The DIC value produced 
for the one-factor CFA model was slightly larger at 
10,593.10. This indicates that although the difference 
in DIC values is relatively small, the two-factor model 
provides a better representation of the data compared to 
the one-factor model.

Bayesian Multilevel Path Analysis

This example is based on a reanalysis of a multilevel path 
analysis described in Kaplan, Kim, and Kim (2009). In 
their study, a multilevel path analysis was employed to 
study within- and between-school predictors of math-
ematics achievement using data from 4,498 students 
from the Program for International Student Assessment 
(PISA) 2003 survey (Organization for Economic Co-
operation and Development [OECD], 2004). The full 

 0
 

 1
0 

 2
0 

 3
0 

 4
0 

 5
0 

 6
0 

 7
0 

 8
0 

 9
0 

 1
00

 

 1
10

 

 1
20

 

 1
30

 

 1
40

 

 1
50

 

 1
60

 

 1
70

 

 1
80

 

 1
90

 

 2
00

 

 2
10

 

 2
20

 

 2
30

 

Observed - Replicated

 0 

 0.5 

 1 

 1.5 

 2 

 2.5 

 3 

 3.5 

 4 

 4.5 

 5 

 5.5 

 6 

C
ou

nt

95% Confidence Interval
   for the Difference
   149.671     212.814

Posterior Predictive
    P-Value 0.000

 2
5 

 3
5 

 4
5 

 5
5 

 6
5 

 7
5 

 8
5 

 9
5 

 1
05

 

 1
15

 

 1
25

 

 1
35

 

 1
45

 

 1
55

 

 1
65

 

 1
75

 

 1
85

 

 1
95

 

 2
05

 

 2
15

 

 2
25

 

 2
35

 

 2
45

 

 2
55

 

 2
65

 

 2
75

 

 2
85

 

Observed

 25 
 45 
 65 
 85 

 105 
 125 
 145 
 165 
 185 
 205 
 225 
 245 
 265 
 285 

R
ep

lic
at

ed

95% Confidence Interval
   for the Difference
   149.671     212.814

Posterior Predictive
    P-Value 0.000

(Proportion of Points in
the Upper Left Half)

FIGURE 38.2.  CFA: PPC 95% confidence interval histogram and PPC scatterplot.



38. Bayesian SEM	   663

multilevel path analysis is depicted in Figure 38.3. The 
final outcome variable at the student level was a measure 
of mathematics achievement (MATHSCOR). Mediat-
ing predictors of mathematics achievement consisted 
of whether students enjoyed mathematics (ENJOY) and 
whether students felt mathematics was important in life 
(IMPORTNT). Student exogenous background vari-
ables included students’ perception of teacher qualities 

(PERTEACH), as well as both parents’ educational lev-
els (MOMEDUC and DADEDUC). At the school level, 
a model was specified to predict the extent to which 
students are encouraged to achieve their full potential 
(ENCOURAG). A measure of teachers’ enthusiasm for 
their work (ENTHUSIA) was viewed as an important 
mediator variable between background variables and 
encouragement for students to achieve full potential. 

MOMEDUC

DADEDUC

PERTEACH

ENJOY

IMPORTNT

MATHSCOR

Within

Between

NEWMETHO

CNSENSUS

CNDITION

ENTHUSIA ENCOURAG

ENJOY

MATHSCOR
IMPORTNT

RANDOM SLOPE

FIGURE 38.3.  Multilevel path analysis diagram. Dark circles represent random intercepts and slopes. From Kaplan, Kim, 
and Kim (2009). Copyright 2009 by SAGE Publications, Inc. Reprinted by permission.
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The variables used to predict encouragement via teach-
ers’ enthusiasm consisted of math teachers’ use of new 
methodology (NEWMETHO), consensus among math 
teachers with regard to school expectations and teaching 
goals as they pertain directly to mathematics instruction 
(CNSENSUS), and the teaching conditions of the school 
(CNDITION). The teaching condition variable was 
computed from the shortage of school’s equipment, so 
higher values on this variable reflect a worse condition.

For this example, we presume to have no prior 
knowledge of any of the parameters in the model. In 
this case, all model parameters received normal prior 
distributions with the mean hyperparameter set at 0 and 
the variance hyperparameter specified as 1010. The key 
issue here is the amount of precision in this prior. With 
this setting, there is very little precision in the prior. As 
a result, the location of this prior can take on a large 
number of possible values.

Parameter Convergence

A multilevel path analysis was computed with 5,000 
burn-in iterations and 5,000 post-burn-in iterations. 
The Brooks and Gelman (1998) convergence diagnos-
tic indicated that all parameters properly converged for 
this model. This model took approximately 1 minute 
to run.

Figure 38.4 presents convergence plots, posterior 
density plots, and autocorrelation plots (for both chains) 
for one of the between-level parameters and one of the 
within-level parameters. Convergence for these param-
eters appears to be tight and horizontal, and the poste-
rior probability densities show a close approximation to 
the normal curve. Finally, the autocorrelation plots are 
low, indicating that dependence was low for both chains. 
The additional parameters in this model showed simi-
lar results in that convergence plots were tight, density 
plots were approximately normal, and autocorrelations 
were low. Appendix 38.2 contains the Mplus code for 
this example. Note that model fit and model comparison 
indices are not available for multilevel models and are 
thus not presented here. This is an area within MCMC 
estimation that requires further research.

Model Interpretation

Table 38.2 presents selected results for within-level 
and between-level parameters in the model.3 For the 
within-level results, we find that MOMEDUC, DADE-
DUC, PERTEACH, and IMPORTNT are positive 

predictors of MATHSCOR. Likewise, ENJOY is posi-
tively predicted by PERTEACH. Finally, MOMEDUC, 
PERTEACH, and ENJOY are positive predictors of 
IMPORTNT.

The between-level results presented here are for 
the random slope in the model that relates ENJOY to 
MATHSCOR. For example, the results indicate that 
teacher enthusiasm moderates the relationship between 
enjoyment of mathematics and math achievement, with 
higher levels of teacher-reported enthusiasm associated 
with a stronger positive relationship between enjoyment 
of math and math achievement. Likewise, the math 
teachers’ use of new methodology also demonstrates a 
moderating effect on the relationship between enjoy-
ment of math and math achievement, where less usage 
of new methodology lowers the relationship between 
enjoyment of mathematics and math achievement. The 
other random slope relationships in the between level 
can be interpreted in a similar manner.

Bayesian Growth Mixture Modeling

The ECLS-K math assessment data were used for this 
example (NCES, 2001). Item response theory (IRT) 
was used to derive scale scores across four time points 
(assessments were in the fall and spring of kindergarten 
and first grade) that were used for the growth mixture 
model. Estimation of growth rates reflects math skill 
development over the 18 months of the study. The sam-
ple for this analysis comprised 592 children and two 
latent mixture classes.

For this example, we presume to have a moderate de-
gree of prior knowledge of the growth parameters and 
the mixture class proportions, but no prior knowledge 
for the factor variances and unique variances. For the 
growth parameters, we have specified particular loca-
tion values, but there is only moderate precision defined 
in the priors (variances = 10). In this case, we are only 
displaying moderate confidence in the parameter val-
ues, as seen through the larger variances specified. This 
specification provides a wider range of values in the dis-
tribution than would be viable but accounts for our lack 
of strong knowledge through the increased variance 
term. Stronger knowledge of these parameter values, 
would decrease the variance hyperparameter term, cre-
ating a smaller spread surrounding the location of the 
prior. However, weaker knowledge of the values would 
increase the variance term, creating a larger spread 
surrounding the location of the prior. For the mixture 
proportions, we presume strong background knowledge 
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Between Within

FIGURE 38.4.  Multilevel path analysis: Convergence, posterior densities, and autocorrelation plots for select parameters.
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of the mixture proportions by specifying class sizes 
through the Dirichlet prior distribution. The factor 
variances and unique variances received IW priors that 
reflected no prior knowledge of the parameter values, 
as specified in Asparouhov and Muthén (2010).

Parameter Convergence

A growth mixture model was computed, with a total of 
10,000 iterations with 5,000 burn-in iterations and 5,000 
post-burn-in iterations. The model converged properly, 
signifying that the Brooks and Gelman (1998) conver-
gence diagnostic indicated parameter convergence for 
this model. This model took less than 1 minute to run.

Figure 38.5 presents convergence plots, poste-
rior density plots, and autocorrelation plots (for both 
chains) for the mixture class proportions. Conver-
gence for the mixture class parameters appears to be 
tight and horizontal. The posterior probability densities 
show a close approximation to the normal curve. Fi-
nally, the autocorrelation plots are quite low, indicating 
relative sample independence for these parameters for 
both MCMC chains. The additional parameters in this 
model showed similar results to the mixture class pa-
rameters in that convergence plots were tight, density 
plots were approximately normal, and autocorrelations 
were low. Appendix 38.3 contains the Mplus code for 
this example.

Model Interpretation

The growth mixture model estimates can be found in 
Table 38.3. For this model, the mean math IRT score 
for the first latent class (mixture) in the fall of kinder-
garten was 32.11 and the average rate of change be-
tween time points was 14.28. The second latent class 
consisted of an average math score of 18.75 in the fall 
of kindergarten, and the average rate of change was 
10.22 points between time points. This indicates that 
Class 1 comprised children with stronger math abili-
ties than Class 2 in the fall of kindergarten. Likewise, 
Class 1 students also have a larger growth rate between 
assessments. Overall, 14% of the sample was in the first 
mixture class, and 86% of the sample was in the second 
mixture class.

Model Fit

Theory suggests that model comparison via the DIC 
is not appropriate for mixture models (Celeux, Hurn, 
& Robert, 2000). As a result, only comparisons from 
the PPC test will be presented for this growth mixture 
modeling (GMM) example. Figure 38.6 includes the 
PPC distribution corresponding to the 95% confidence 
interval for the difference between the observed data 
test statistic and the replicated data test statistic. The 
lower bound of this interval was 718.25, and the upper 

TABLE 38.2.  Selected MCMC Multilevel Path Analysis Estimates: PISA 2003

Parameter EAP SD p-value 95% credibility interval

Within level
  MATHSCOR ON MOMEDUC 3.93 0.96 0.00 2.15, 5.79
  MATHSCOR ON DADEDUC 4.76 0.96 0.00 2.91, 6.68
  MATHSCOR ON PERTEACH 6.10 2.31 0.00 1.64, 10.72
  MATHSCOR ON IMPORTNT 15.67 1.98 0.00 11.84, 19.72
  ENJOY ON PERTEACH 0.45 0.02 0.00 0.41, 0.49
 I MPORTNT ON MOMEDUC 0.02 0.00 0.00 0.01, 0.03
 I MPORTNT ON PERTEACH 0.24 0.01 0.00 0.21, 0.27
 I MPORTNT ON ENJOY 0.53 0.01 0.00 0.51, 0.55

Between level
  SLOPE ON NEWMETHO –4.26 2.58 0.05 –9.45, 1.02
  SLOPE ON ENTHUSIA 8.95 4.81 0.03 –0.76, 18.23
  SLOPE ON CNSENSUS –3.09 3.72 0.20 –10.65, 4.29
  SLOPE ON CNDITION –8.24 2.66 0.00 –13.53, –3.09
  SLOPE ON ENCOURAG –2.06 2.79 0.23 –7.59, 3.58

Note. EAP, expected a posteriori; SD, standard deviation.
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bound was 790.56. Similar to the CFA example pre-
sented earlier, this positive confidence interval indicates 
that the observed data test statistic is much larger than 
what would have been generated by the model. Like-
wise, Figure 38.6 also includes the PPC scatterplot. All 
of the points fall below the 45 degree line, which indi-
cates that the model was rejected based on a sufficiently 
small p-value of .00. The results of the PPC test indi-
cate substantial model misfit for this GMM model.

Discussion

This chapter has sought to present an accessible intro-
duction to Bayesian SEM. An overview of Bayesian 
concepts, as well as a brief introduction to Bayesian 
computation, was also provided. A general frame-
work of Bayesian computation within the Bayesian 
SEM framework was also presented, along with three 
examples covering first- and second-generation SEM. 
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FIGURE 38.5.  GMM: Convergence, posterior densities, and autocorrelation plots for mixture class proportions.



668  	 V .  AD  V ANC   E D  A P P LICATION        S

With the advent of open-source software for Bayesian 
computation, such as packages found in R (R Develop-
ment Core Team, 2008) and WinBUGS (Lunn et al., 
2000), as well as the newly available MCMC estimator 
in Mplus (Muthén & Muthén, 2010), researchers can 
now implement Bayesian methods for a wide range of 
research problems.

In our examples, we specified different degrees of 
prior knowledge for the model parameters. However, it 
was not our intention in this chapter to compare models 
under different specification of prior distributions, nor 
to compare results to conventional frequentist estima-
tion methods. Rather, the purpose of these examples 
was to illustrate the use and interpretation of Bayesian 
estimation results.

The relative ease of Bayesian computation in the 
SEM framework raises the important question of why 
one would choose to use this method—particularly 
when it can often provide results that are very close to 
that of frequentist approaches such as maximum like-

lihood. In our judgment, the answer lies in the major 
distinction between the Bayesian approach and the 
frequentist approach, that is, in the elicitation, speci-
fication, and incorporation of prior distributions on the 
model parameters.

As pointed out by Skrondal and Rabe-Hesketh (2004, 
p. 206), there are four reasons why one would adopt the 
use of prior distributions—one of which they indicate 
is “truly” Bayesian, while the others represent a more 
“pragmatic” approach to Bayesian inference. The truly 
Bayesian approach would specify prior distributions 
that reflect elicited prior knowledge. For example, in the 
context of SEM applied to educational problems, one 
might specify a normal prior distribution on the regres-
sion coefficient relating socioeconomic status (SES) to 
achievement, where the hyperparameter on the mean 
of the regression coefficient is obtained from previous 
research. Given that an inspection of the literature sug-
gests roughly the same values for the regression coef-
ficient, a researcher might specify a small value for the 

TABLE 38.3.  Mplus MCMC GMM Estimates: ECLS-K Math IRT Scores

Parameter EAP SD p-value 95% credibility interval

Latent class 1
 C lass proportion 0.14
 I ntercept and slope correlation –0.06 0.19 0.38 –0.44, 0.32

Growth parameter means
 I ntercept 32.11 1.58 0.00 28.84, 35.09
  Slope 14.28 0.78 0.00 12.72, 15.77

Variances
 I ntercept 98.27 26.51 0.00 54.37, 158.07
  Slope 18.34 4.51 0.00 10.60, 27.76

Latent class 2
 C lass proportion 0.86
 I ntercept and slope correlation 0.94 0.03 0.00 0.87, 0.98

Growth parameter means
 I ntercept 18.75 0.36 0.00 17.98, 19.40
  Slope 10.22 0.19 0.00 9.86, 10.61

Variances
 I ntercept 22.78 3.63 0.00 16.12, 30.56
  Slope 7.84 1.15 0.00 5.93, 10.29

Residual variances
 A ll time points and classes 32.97 1.17 0.00 30.73, 35.34

Note. EAP, expected a posteriori; SD, standard deviation.



38. Bayesian SEM	   669

variance of the regression coefficient—reflecting a high 
degree of precision. Pragmatic approaches, on the other 
hand, might specify prior distributions for the purposes 
of achieving model identification, constraining param-
eters so they do not drift beyond their boundary space 
(e.g., Heywood cases) or simply because the application 
of MCMC can sometimes make problems tractable that 
would otherwise be very difficult in more conventional 
frequentist settings.

Although we concur with the general point that 
Skrondal and Rabe-Hesketh (2004) are making, we do 

not believe that the distinction between “true” Bayes-
ians versus “pragmatic” Bayesians is necessarily the 
correct distinction to be made. If there is a distinction 
to be made, we argue that it is between Bayesians and 
pseudo-Bayesians, where the latter implement MCMC 
as “just another estimator.” Rather, we adopt the prag-
matic perspective that the usefulness of a model lies in 
whether it provides good predictions. The specification 
of priors based on subjective knowledge can be sub-
jected to quite pragmatic procedures in order to sort out 
the best predictive model, such as the use of PPC.
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What Bayesian theory forces us to recognize is that 
it is possible to bring in prior information on the dis-
tribution of model parameters, but that this requires a 
deeper understanding of the elicitation problem (see 
Abbas, Budescu, & Gu, 2010; Abbas, Budescu, Yu, 
& Haggerty, 2008; O’Hagan et al., 2006). The gen-
eral idea is that through a careful review of prior re-
search on a problem, and/or the careful elicitation of 
prior knowledge from experts and/or key stakeholders, 
relatively precise values for hyperparameters can be 
obtained and incorporated into a Bayesian specifica-
tion. Alternative elicitations can be directly compared 
via Bayesian model selection measures as described 
earlier. It is through (1) the careful and rigorous elicita-
tion of prior knowledge, (2) the incorporation of that 
knowledge into our statistical models, and (3) a rigor-
ous approach to the selection among competing mod-
els that a pragmatic and evolutionary development of 
knowledge can be realized—and this is precisely the 
advantage that Bayesian statistics, and Bayesian SEM 
in particular, has over its frequentist counterparts. Now 
that the theoretical and computational foundations have 
been established, the benefits of Bayesian SEM will be 
realized in terms of how it provides insights into impor-
tant substantive problems.
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Notes

1.	 The credibility interval (also referred to as the posterior 
probability interval) is obtained directly from the quantiles 
of the posterior distribution of the model parameters. From 
the quantiles, we can directly obtain the probability that a 
parameter lies within a particular interval. This is in contrast 
to the frequentist confidence interval, where the interpreta-
tion is that 100(1 – a)% of the confidence intervals formed 
a particular way capture the true parameter of interest under 
the null hypothesis.

2.	 Note that in the case where there is only one element in the 
block, the prior distribution is assumed to be inverse-gamma, 
that is, qIW ∼ IG(a, b).

3.	 Tables with the full results from this analysis are available 
upon request.
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APPENDIX 38.1. CFA  Mplus Code
title: MCMC CFA with ECLS-K math data
data: file is cfadata.dat;
variable: names are y1-y9;
analysis:

estimator = BAYES; !This option uses the MCMC Gibbs sampler as a default

chains = 2; !Two chains is the default in Mplus Version 6

distribution = 10,000; !The first half of the iterations is always used as burn-in

point = mean; !Estimating the median is the default for Mplus

model priors: !This option allows for priors to be changed from default values

a2 ~ N(.8,.01); !Normal prior on Factor 1 loading: Item 2

b4 ~ N(.8,.01); !Normal prior on Factor 2 loading: Item 4

b5 ~ N(.8,.01); !Normal prior on Factor 2 loading: Item 5

b6 ~ N(.8,.01); !Normal prior on Factor 2 loading: Item 6

b7 ~ N(.8,.01); !Normal prior on Factor 2 loading: Item 7

b8 ~ N(.8,.01); !Normal prior on Factor 2 loading: Item 8

b9 ~ N(.8,.01); !Normal prior on Factor 2 loading: Item 9

model:
f1 by y1@1 y2*.8(a2); !Normal priors on Factor 1 loadings with arbitrary item identifiers (a2)

f2 by y3@1 y4-y9*.8(b4-b9); !Priors on Factor 2 loadings with arbitrary item identifiers (b4-b9)

f1*1;
f2*1;
f1 with f2 *.4;

plot:
type = plot2; !Requesting all MCMC plots: convergence, posterior densities, and autocorrelations

 
 
APPENDIX 38.2.  Multilevel Path Analysis with a Varying‑Slope Mplus Code
title: Path Analysis
data: File is multi-level.dat;
variable: names are schoolid newmetho enthusia cnsensus

cndition encourag momeduc dadeduc
perteach enjoy importnt mathscor;
Usevariables are newmetho enthusia cnsensus
cndition encourag momeduc dadeduc
perteach enjoy importnt mathscor;
Between = newmetho enthusia cnsensus cndition encourag;
Cluster is schoolid;

analysis: type = twolevel random;
estimator = BAYES;
point=mean;

model:
%Within%

mathscor ON momeduc dadeduc perteach importnt;
enjoy ON perteach;
importnt ON momeduc perteach enjoy;
momeduc WITH dadeduc perteach;
dadeduc WITH perteach;
slope | mathscor ON enjoy;

(cont.)
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APPENDIX 38.2.  (cont.)

%Between%
mathscor ON newmetho enthusia cnsensus cndition encourag;
enjoy ON newmetho enthusia cnsensus cndition encourag; importnt ON

newmetho enthusia cnsensus cndition encourag;
slope ON newmetho enthusia cnsensus cndition encourag;
encourag ON enthusia;
enthusia ON newmetho cnsensus cndition;

plot: type=plot2;

 
 
APPENDIX 38.3. G rowth Mixture Model Mplus Code
title: MCMC GMM with ECLS-K math data
data: file is Math GMM.dat;
variable: names are y1-y4;

classes =c(2);
analysis:

type = mixture;
estimator = BAYES; !This option uses the MCMC Gibbs sampler as a default
chains = 2; !Two chains is the default in Mplus Version 6
distribution = 10,000; !The first half of the iterations is always used as burn-in
point = mean; !Estimating the median is the default for Mplus

model priors: !This option allows for priors to be changed from default values
a ~ N(28,10); !Normal prior on mixture class 1 intercept
b ~ N(13,10); !Normal prior on mixture class 1 slope
c ~ N(17,10); !Normal prior on mixture class 2 intercept
d ~ N(9,10); !Normal prior on mixture class 2 slope
e ~ D(80,510); !Dirichlet prior on mixture class proportions

model:
%overall%

y1-y4*.5;
i s | y1@0 y2@1 y3@2 y4@3;
i*1; s*.2;
[c#1*-1](e); !Setting up Dirichlet prior on mixture class proportions with arbitrary identifier (e)
y1 y2 y3 y4 (1);

%c#1%
[i*28](a); !Setting up Normal prior on mixture class 1 intercept with arbitrary identifier (a)
[s*13](b); !Setting up Normal prior on mixture class 1 slope with arbitrary identifier (b)
i with s;
i; s;

%c#2%
[i*17](c); !Setting up Normal prior on mixture class 2 intercept with arbitrary identifier (c)
[s*9](d); !Setting up Normal prior on mixture class 2 intercept with arbitrary identifier (d)
i with s;
i; s;

plot:
type = plot2; !Requesting all MCMC plots: convergence, posterior densities, and autocorrelations
output: stand;
cinterval;  
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