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This article examines Bayesian model averaging as a means of addressing predictive perfor-
mance in Bayesian structural equation models. The current approach to addressing the
problem of model uncertainty lies in the method of Bayesian model averaging. We expand
the work of Madigan and his colleagues by considering a structural equation model as a
special case of a directed acyclic graph. We then provide an algorithm that searches the model
space for submodels and obtains a weighted average of the submodels using posterior model
probabilities as weights. Our simulation study provides a frequentist evaluation of our
Bayesian model averaging approach and indicates that when the true model is known,
Bayesian model averaging does not yield necessarily better predictive performance compared
to nonaveraged models. However, our case study using data from an international large-scale
assessment reveals that the model-averaged submodels provide better posterior predictive
performance compared to the initially specified model.
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The distinctive feature that separates Bayesian statistical
inference from its frequentist counterpart is its focus on
describing and modeling all forms of uncertainty. The pri-
mary focus of uncertainty within a Bayesian analysis con-
cerns prior knowledge about model parameters. In the
Bayesian framework, all unknowns are described by prob-
ability distributions. Parameters constitute the central focus
of statistical modeling, and because they are, by definition,
unknown, Bayesian inference encodes background knowl-
edge about parameters by means of prior distributions.

Within the Bayesian framework, parameters are not the
only unknown elements. In fact, the Bayesian framework
recognizes that models themselves possess uncertainty inso-
far as a particular model is typically chosen based on prior
knowledge of the problem at hand and the variables that
have been used in previously specified models. This form of
uncertainty often goes unnoticed. Quoting Hoeting,
Madigan, Raftery, and Volinsky (1999):

Standard statistical practice ignores model uncertainty. Data
analysts typically select a model from some class of models
and then proceed as if the selected model had generated the
data. This approach ignores the uncertainty in model selec-
tion, leading to over-confident inferences and decisions that
are more risky than one thinks they are. (p. 382)

The current approach to addressing the problem of
model uncertainty from a Bayesian perspective lies in the
method of Bayesian model averaging (BMA).

BMA has had a long history of theoretical and practical
applications. Early work by Learner (1978) laid the founda-
tion for BMA. Fundamental theoretical work on BMA was
conducted in the mid-1990s by Madigan and his colleagues
(e.g., Hoeting et al., 1999; Madigan & Raftery, 1994;
Raftery, Madigan, & Hoeting, 1997). Additional theoretical
work was conducted by Clyde (1999). Draper (1995) dis-
cussed how model uncertainty can arise even in the context
of experimental designs, and Kass and Raftery (1995)
provided a review of BMA and the costs of ignoring
model uncertainty. A more recent review of the general
problem of model uncertainty can be found in Clyde and
George (2004).
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Practical applications of BMA can be found across a wide
variety of domains. A perusal of the extant literature shows
applications of BMA to economics (e.g., Fernández, Ley, &
Steele, 2001), bioinformatics of gene express (e.g., Yeung,
Bumbarner, & Raftery, 2005), and weather forecasting (e.g.,
Sloughter, Gneiting, & Raftery, 2013), to name just a few.
Indeed, of relevance to this article is the earlier work of
Madigan and Raftery (1994), who applied BMA to so-called
recursive causal models. However, our review of the extant
literature suggests that BMA applied to structural equation
modeling (SEM) has yet to be fully developed or studied
under controlled conditions, nor is there readily available soft-
ware to conduct BMA for SEM models. BMA has been imple-
mented in the R software program “BMA” (Raftery, Hoeting,
Volinsky, Painter, & Yeung, 2014) and can be applied to regres-
sion models, generalized linear models, and survival models.

The purpose of this article is to develop and apply BMA
for SEM. Open source and proprietary software for conduct-
ing Bayesian SEM are now widely available, but, quite
naturally, these programs focus on quantifying uncertainty
in the model parameters and offer flexibility in encoding
informative and noninformative priors. Bayesian approaches
to structural equation model evaluation are also available in
these software programs through such methods as posterior
predictive checking (Gelman, Carlin, Stern, & Rubin, 2003).
However, these software programs do not account for model
uncertainty. We argue that the Bayesian framework for SEM
estimation should also account for model uncertainty, and to
that end, this article develops and assesses the BMA
approach to addressing modeling uncertainty in SEM and
provides open source R code to conduct such an analysis.

The organization of this article is as follows. In the next
section we briefly describe Bayesian SEM. This is then fol-
lowed by an outline of the method of BMAwith an additional
discussion of Occam’s window following closely the work of
Madigan and his colleagues (Hoeting et al., 1999; Madigan &
Raftery, 1994; Raftery et al., 1997). Next, we describe our
algorithm for searching the space of possible submodels of a
general structural equation model. This is followed by a
description and results of our simulation study wherein we
describe the outcome of interest, namely improved posterior
predictive performance of a Bayesian structural equation
model. A case study is provided based on data from the 2009
cycle of the Program for International Student Assessment
(PISA 2009; Organization for Economic Cooperation and
Development [OECD], 2010) Results follow, and the article
concludes with a discussion of the implications of our study for
the practice of SEM as well as future research directions.

SPECIFICATION OF A BAYESIAN STRUCTURAL
EQUATION MODEL

We focus our attention on structural equation models among
observed variables. Following Kaplan and Depaoli (2012)

and Kaplan (2014), a structural equation model can be
specified as follows. Let

y ¼ αþ Byþ Γxþ ζ (1)

where y is a vector of manifest endogenous variables and x
is a vector of observed exogenous variables with covariance
matrix Φ. Further, let α be a vector of structural intercepts,
Β is a matrix of structural regression coefficients relating the
observed variables y to other observed endogenous vari-
ables, Γ is a matrix of structural regression coefficients
relating the endogenous variables to observed exogenous
variables x, and ζ is a vector of structural disturbances
with covariance matrix Ψ assumed to be diagonal.

Conjugate Priors for SEM Parameters

To specify prior distributions on all model parameters, it is
notationally convenient to arrange the model parameters as
sets of common conjugate prior distributions. Parameters
with the subscript norm follow a normal distribution,
whereas those with the subscript IW follow a inverse
Wishart distribution. Let θnorm ¼ α;B;Γf g be the vector of
free model parameters that are assumed to follow a normal
distribution, and let θIW ¼ Φ;Ψf g be the vector of free
model parameters that are assumed to follow the inverse
Wishart distribution. Formally, we write

θnorm , N μ; Ωð Þ; (2)

where μ and Ω are the mean and variance hyperparameters,
respectively, of the normal prior. For blocks of variances
and covariances in Ξ and Ψ, we assume that the prior
distribution is inverse Wishart; that is,1

θIW , IW R; δð Þ; (3)

where R is a positive definite matrix, and δ > q� 1, where
q is the number of observed variables. Different choices for
R and δ will yield different degrees of “informativeness” for
the inverse Wishart distribution.

MCMC Sampling for Bayesian SEM

Without question, the growth of interest in Bayesian methods
is due to the availability of powerful statistical software that
enables the application of Markov chain Monte Carlo
(MCMC) algorithms such as the Metropolis algorithm, the
Metropolis–Hastings algorithm, and the Gibbs sampler (see,
e.g., Gilks, Richardson, & Spiegelhalter, 1996). For the pur-
poses of this section, we discuss Gibbs sampling for Bayesian
SEM and BMA. The Bayesian approach begins by

1Note that in the case where there is only one element in the block, the
prior distribution is assumed to be inversegamma; that is, θIW , IGða; bÞ.
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considering η as missing data. Then, the observed data y are
augmented with η in the posterior analysis. The Gibbs sam-
pler then produces a posterior distribution θnorm; θIW ; ηjy½ � via
the following algorithm. At the sþ 1ð Þth iteration, using

current values of η sð Þ, θ sð Þ
norm and θ sð Þ

IW ,

1: sample η sþ1ð Þ from p ηjθðsÞnorm; θ
sð Þ
IW ; y

� �
(4)

2: sample θ sþ1ð Þ
norm from p θnormjθ sð Þ

IW ; η sþ1ð Þ; y
� �

(5)

3: sample θ sþ1ð Þ
IW from p θIW jθ sþ1ð Þ

norm ; η sþ1ð Þ; y
� �

:

(6)

In words, Equations 4 through 6 first require start values
for θ 0ð Þ

normand θ 0ð Þ
IW to begin the MCMC generation. Then,

given these current start values and the data y at iteration
s, we generate η at iteration sþ 1. Given the latent data and
observed data, the algorithm produces the posterior distribu-
tion of the measurement model and structural model para-
meters in Equations 4 through 6, respectively.

Bayesian SEM Model Evaluation and Selection

SEM, by its very nature, involves the specification estima-
tion, and testing of models that purport to represent the
underlying structure of the data. As in the case of model
evaluation in frequentist SEM, it is important to evaluate the
quality of a Bayesian SEM model vis-a-vis the data. One
method available to evaluate Bayesian SEM models
involves posterior predictive checking and the correspond-
ing Bayesian p-value, which uses the posterior predictive
distribution of replicated data and compares it to the sample
data. Any deviation between the model-generated data and
actual data suggests possible model misspecification
(Gelman et al., 2003; Kaplan, 2014).

An equally important feature of SEM practice is model
comparison and selection. The goal of model selection and
comparison in the Bayesian domain differs somewhat from
the frequentist domain. Specifically, the goal of model com-
parison and selection in the frequentist domain focuses pri-
marily on the model that best fits the data. In the Bayesian
domain, however, the goal of model comparison and selection
is to find a model that best predicts the data—and in the
Bayesian domain the focus is on posterior prediction. A very
simple and intuitive approach to model selection uses so-
called Bayes factors (Kass & Raftery, 1995; Raftery, 1995).
In essence, the Bayes factor provides a way to quantify the
odds that the data favor one hypothesis over another and is
defined to be the ratio of two integrated likelihoods. Assuming
a priori that there is no reason to favor one model over another
(equal prior odds), then the posterior odds that the data favor
one model over another is equivalent to the Bayes factor. One
key benefit of the Bayes factor is that the analyst can

incorporate informative prior odds into the Bayes factor if
there is reason to believe that one model is more likely to be
true than another.2 Another key benefit of Bayes factors is that
models do not have to be nested.

An interesting feature of the Bayes factor is that under
conditions where there is little prior information, Raftery
(1995) showed that an approximation of the Bayes factor
yields the Bayesian information criterion (BIC). However,
although the BIC is derived from a fundamentally Bayesian
perspective, it is often productively used for model compar-
ison in the frequentist domain. An explicitly Bayesian
approach to model comparison and selection based on the
concept of Bayesian deviance was developed by
Spiegelhalter, Best, Carlin, and van der Linde (2002) and
referred to as the deviance information criterion (DIC). The
BIC and DIC are used the same way—namely, for a set of
competing models, the model with the lowest value of the
BIC or DIC is the model to be chosen from the predictive
point of view mentioned earlier.

BAYESIAN MODEL AVERAGING

To begin, consider a quantity of interest such as a future
observation. Following the notation given in Madigan and
Raftery (1994), we denote this quantity as �. Next, consider
a set of competing models Mk ; k ¼ 1; 2; . . . ;K that are not
necessarily nested. The posterior distribution of � given
data D can be written as

pð�jDÞ ¼
XK
k¼1

pð�jMkÞpðMk jDÞ; (7)

where pðMk jDÞ is the posterior probability of model Mk

written as

pðMk jDÞ ¼ pðDjMkÞpðMkÞPK
l¼1 pðDjMlÞpðMlÞ

: (8)

The interesting feature of Equation 8 is that pðMk jDÞ can
be different for different models. The term pðDjMkÞ can be
expressed as an integrated likelihood

pðDjMkÞ ¼
ð
pðDjθk ;MkÞpðθk jMkÞdθk ; (9)

where pðθk jMkÞ is the prior density of θk under model Mk

(Raftery et al., 1997). Thus, BMA provides an approach for
combining models specified by researchers. The advantage
of BMA was discussed by Madigan and Raftery (1994),
who showed that BMA provides better predictive

2 This is rarely seen in practice, and of course, software packages that
produce the Bayes factor will use equal prior odds as a default.

BAYESIAN MODEL AVERAGING FOR SEM 3

D
ow

nl
oa

de
d 

by
 [

C
al

if
or

ni
a 

St
at

e 
U

ni
ve

rs
ity

 F
ul

le
rt

on
] 

at
 1

6:
41

 1
0 

Fe
br

ua
ry

 2
01

6 



performance than that of any single model. We show that a
Bayesian model averaged structural model provides better
prediction of the endogenous variable of interest than any
single model, including the initially specified model.

Occam’s Window

As pointed out by Hoeting et al. (1999), BMA is difficult to
implement. In particular, they noted that the number of terms
in Equation 7 can be quite large, the corresponding integrals
are hard to compute (although possibly less so with the
advent of MCMC), the specification of pðMkÞ might not be
straightforward, and choosing the class of models to average
over is also challenging. The problem of reducing the overall
number of models that one could incorporate in the summa-
tion of Equation 7 has led to a solution based on the notion of
Occam’s window (Madigan & Raftery, 1994).

To motivate the idea behind Occam’s window, consider
the problem of finding the best subset of predictors in a
linear regression model. Following closely the discussion
given in Raftery et al. (1997), we consider an initially large
number of predictors, but perhaps the goal is to find a subset
that provides accurate predictions.3 As noted in the earlier
quote by Hoeting et al. (1999), the concern in drawing
inferences from a single “best” model is that the choice of
a single set of predictors ignores uncertainty in model selec-
tion. Occam’s window (Madigan & Raftery, 1994) provides
an approach for BMA by reducing the subset of models
under consideration.

The Occam’s window algorithm proceeds in two steps
(Raftery et al., 1997). In the first step, models are eliminated
if they predict the data less well than the model that pro-
vides the best predictions. Formally, consider a set of mod-
els k ¼ 1 . . .K; and a cutoff value C chosen in advance by
the analyst. Then, the set A0

A0 ¼ Mk :
maxlfpðMljDÞg

pðMk jDÞ � C

� �
: (10)

We see that Equation 10 compares the model with the
largest posterior model probability, maxlfpðMljDÞg; to a
given model pðMk jDÞ: If the ratio in Equation 10 is less
than or equal to a chosen value C, then it is discarded from
the set of models to be included in the model averaging.

In the second step, models are discarded from considera-
tion if they receive less support from the data than simpler
submodels. Formally, we consider a set B, where

B ¼ Mk : 9Ml 2 A0;Ml � Mk ;
pðMljDÞ
pðMk jDÞ > 1

� �
: (11)

Equation 11 states that there exists a model Ml within the set
A0 and where Ml is simpler than Mk : If the simpler model
receives more support from the data than the more complex
model, then it is included in the set B. Notice that the second
step corresponds to the principle of Occam’s razor (Madigan
& Raftery, 1994).

With Step 1 and Step 2, the problem of BMA is simpli-
fied by replacing Equation 7 with

pð�jD;AÞ ¼
X
Mk2A

pð�jMk ;DÞpðMk jD;AÞ; (12)

where A is the relative complement of A′ and B. That is, the
models under consideration for BMA are those that are in A′
but not in B.

Madigan and Raftery (1994) then outlined the approach
to choosing between two models to be considered for BMA.
Specifically, now consider just two models M1 and M0,
where M0 is the smaller of the two models. This could be
the case where M0 contains fewer predictors than M1 in a
regression analysis. In terms of log-posterior odds, if the
log-posterior odds are positive, indicating support for M0,
then we reject M1. If the log-posterior odds are large and
negative, then we reject M0 in favor of M1. Finally, if the
log-posterior odds lie in between the preset criterion, then
both models are retained.

THE BMA-SEM ALGORITHM

Our approach to BMA for SEM makes use of the relation-
ship between path diagrams commonly encountered in SEM
practice and so-called directed acyclic graphs (DAGs), the
latter having been developed by Pearl (2009). BMA over
DAGs was discussed in Madigan and Raftery (1994). In this
section, we describe the full algorithm used to conduct
BMA for structural equation models.

The general steps of our algorithm are as follows:

1. Specify an initial model of interest recognizing that
this might not be the model that generated the data.

2. Starting with the initial model represented as a DAG,
implement a search over the DAG to reduce the the
space of models to a reasonable size.

3. Obtain the posterior model probabilities for each
model.

4. Obtain the weighted average of structural parameters
over each model, weighted by the posterior model
probabilities.

3 The notion of best subset regression is controversial in the frequentist
framework because of concern over capitalization on chance. However, in
the Bayesian framework with its focus on predictive accuracy, finding the
best subset of predictors is less of a problem.
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5. Compare predictive performance of the BMA-SEM to
the initially specified Bayesian SEM by computing
the reduced form of the models and calculating the
log score or the predictive coverage. Our approach
has been programmed in R (R Core Team, 2014) and
is available at http://bise.wceruw.org/publications.
html.

Model Selection Via the Up and Down Algorithm

We apply the search algorithm suggested by Madigan and
Raftery (1994), which we refer to as the up and down
algorithm. For a set of models under consideration we first
execute the down algorithm, where each model in the set is
compared with its submodels. If there is a model with no
submodel in the down algorithm, then the model comes
under consideration for the up algorithm. Thus, the up
algorithm is carried out only when a set of models under
consideration for the up algorithm exist after the down
algorithm is completed.

The notation for the up and down algorithm is as follows,
where initial values are denoted in parentheses:

● A is the set of acceptable models ðA ¼ ϕÞ.
● CD is the set of initial models considered for the down
algorithm.

● CU is the set of models considered for the up algorithm
ðCU ¼ ϕÞ.

● M is a model from CD in the down algorithm or a
model from CU in the up algorithm.

● Msub is a submodel of M in the down algorithm.
● Msup is a supermodel of M in the up algorithm.
● BICM is the BIC for model M.
● BICMsub is the BIC for model Msub.
● BICMsup is the BIC for model Msup.
● C is the cutoff value in the Occam’s window.

We outline the down algorithm and then the up algorithm in
the following sections.

Down algorithm

1. Randomly select a model M from CD.
2. Remove M from CD and add M into A.
3. If M has no submodel, then remove M from A, add

M into CU, and go to step 8.
4. If M has submodels in CD, then select a submodel

Msub by randomly removing a link from M.
5. Fit M and Msub to the data and compute BICM and

BICMsub, respectively.
6. Model comparison

a. Calculate the difference between the BIC values.
ΔBIC ¼ BICM � BICMsub .

b. If ΔBIC > logðCÞ, then add Msub into CD and
remove M from A.

c. If ΔBIC <� logðCÞ, then remove both Msub and
all its submodels from CD.

d. If � logðCÞ � ΔBIC � logðCÞ, then add Msub

into CD.
7. Repeat steps 4 to 6 until there are no remaining

submodels of M in CD to be compared.
8. Go to step 1 until there is no remaining model in CD.
9. If CU � ϕ, then execute the up algorithm.

Up algorithm

10. Randomly select a model M from CU.
11. Remove M from CU and add M into A.
12. If M has no supermodel, go to step 17.
13. If M has supermodels in CU, then select a super-

model Msup by randomly adding a link to model M.
14. Fit M and Msup to data and compute BICM and

BICMsup , respectively.
15. Model comparison

a. Calculate the difference between the two BIC
values, ΔBIC ¼ BICMsup � BICM

b. If ΔBIC > logðCÞ, then add M into A.
c. If ΔBIC <� logðCÞ, then add Msup into CU and

remove M from A.
d. If � logðCÞ � ΔBIC � logðCÞ, then add Msup

into CU.
16. Repeat steps 13 to 15 until there is no remaining

supermodel of M in CU to be compared.
17. Go to step 10 until there is no remaining model

in CU.

Model Averaging

A set of J possible structural equation models (l = 1,2,…, J)
in A are chosen through the up and down algorithm. With
this set, the posterior model probabilities (PMPs) are
obtained using a BIC approximation as

pðMjjDÞ ¼ expð�:5� ΔBICjÞPJ
l¼1 expð�:5� ΔBIClÞ

; (13)

where ΔBIC is the difference between the BIC of each
model and the maximum of BICs of all the models in the
set. The posterior model probabilities are used as weights to
obtain posterior means of parameters across all the models
in the set. In other words, posterior means of the model
parameters are the averaged parameters of the posterior
distributions for the set of selected models, weighted by
their posterior model probabilities. The posterior mean for,
say, parameter θ under model Mj given D, can be written as

EðθjD;MjÞ ¼
X
Mj2A

θ̂pðMjjDÞ: (14)
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Predictive Performance

This article compares the predictive performance of a BMA-
SEM to the predictive performance based on the initially
specified Bayesian structural equation model. For this com-
parison, it is convenient to transform the structural form of
the model to its reduced form where the endogenous vari-
ables are on the left side of the equation and the exogenous
variables are on the right side. The structural form can be
rewritten as

ðI� BÞy ¼ αþ Γxþ ζ: (15)

If ðI�BÞis nonsingular, then the equation can be
written as

y ¼ ðI� BÞ�1αþ ðI� BÞ�1Γxþ ðI� BÞ�1ζ
(16)

¼ Π0 þΠ1xþ ζ�; (17)

where Π0 is the vector of reduced form intercepts, Π1 is the
vector of reduced form slopes, and ζ* is the vector of
reduced form disturbances with variance matrix Ψ*.

Using the reduced form, we obtain 90% of predictive
coverage, which is the percentage of the model for the
observation in a new data set or a test set that fall in the
90% prediction interval (Hoeting et al., 1999). The compar-
ison procedure is as follows:

1. Randomly divide the data set into a model-averaging
set and a predictive testing set.

2. Fit a single Bayesian structural equation model and
BMA-SEM to the model-averaging data.

3. Convert the structural form of the model to its
reduced form.

4. Predict the final dependent variable in the reduced
form for the predictive testing data with the result of
the reduced form of the Bayesian structural equation
model and BMA-SEM.

5. Compare their predictive performance based on 90%
of predictive coverage.

SIMULATION STUDY: METHODS AND RESULTS

Our simulation study examines two models and two
sample size conditions. The two models are specified as
shown in Figures 1 and 2 and are the same except that
Model 1 has six weaker regression coefficients compared
to Model 2. The population covariance matrices for these
data sets were generated using Mplus 7.1 (Muthén &
Muthén, 1998–2010). Data under all conditions of
the design were replicated 100 times, providing a fre-
quentist evaluation of the estimation methods used in
this study.

For each model, two different sample sizes were exam-
ined: 200 and 5,000. Each data set was evenly split into the
model averaging data set and the predictive testing data
set. The model averaging data set ðN ¼ 100 orN ¼ 2; 500Þ
was use to estimate the each model under three different
methods: BMA-SEM, Bayesian structural equation model,
and conventional frequentist SEM (FSEM) under maxi-
mum likelihood estimation, which was fit using the R
package “lavaan” (Rosseel, 2012) . The predictive testing
data ðN ¼ 100 orN ¼ 2; 500Þ were used to compare the
three methods with respect to predictive Performance.

A Bayesian structural equation model was fit to the
model averaging data sets. We used noninformative conju-
gate priors for all model parameters. To obtain the posterior
distributions of the model parameters, we used the “rjags”
package (Plummer, 2014). The “coda” package (Plummer,
Best, Cowles, & Vines, 2006) was also used for postanalysis
processing of the MCMC diagnostics and posterior summa-
ries. For this article, the algorithm was set to produce 5,000

X1 Y1

1 –1.0

1.0

2.0

0.1
1.0

0.75

1.0

1.5

0.1

3.0

3.00.1

0.1

0.0

0.1
0.1

Y2

Y3

e3

e2

1

X2

X3

FIGURE 1 Model 1 for the simulation study.
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burn-in iterations with 245,000 post-burn-in draws and a
thinning interval of 50 from two chains starting at different
locations of the posterior distribution.4

Our simulation study also implemented BMA-SEM
under three different cutoff values (C) of Occam’s win-
dow–4, 20, and 100— to examine how different cutoff
values affect the model averaging and prediction results.

Predictive Performance Comparison

The predictive performance of BMA-SEMwith three different
cutoff values was compared to the performance of FSEM and
the Bayesian structural equation model. Prediction was also
examined under true SEM where the true parameters were
used for the reduced form in the prediction. The averaged
90% coverage of prediction over 100 replications for the
predictive testing data set under the design conditions is illu-
strated in Table 1. The simulation results show that BMA-
SEM performs as well as FSEM when the true model is
known, although BMA-SEM shows slightly lower coverage
than the Bayesian structural equation model and true SEM
with a small sample size. Different cutoff values of the
Occam’s window for BMA-SEM did not affect prediction
under the conditions of this simulation.

CASE STUDY: METHODS AND RESULTS

Having demonstrated that our BMA-SEM approach pro-
vides the same predictions we would obtain if the true
model were known, we move to our case study, where
theory predicts that BMA should provide better predictions
than any submodel based on predictive coverage and the
log-score rule (e.g., Madigan & Raftery, 1994). For our case

study, we used data from PISA 2009 (OECD, 2010) to
estimate a model relating reading proficiency to a set of
background and reading strategy variables. The sample was
collected from PISA-eligible students in the United States,
and the sample size was 5,053. The sample was split into a
model averaging set (n = 2,526) and a predictive testing
set (n = 2,527). The background exogenous variables in
the initial structural equation model are Gender
ðmale ¼ 0; female ¼ 1Þ; immigrant status (Immigr); and a
measure of the economic, social, and cultural status of the
student (ESCS). Additionally, three measures of student
reading strategies were mediating endogenous variables
including memorization strategies (MEMO), elaboration
strategies (ELAB), and control strategies (CSTRAT). The
first plausible value of the PISA 2009 reading assessment
(Reading) was used as the final outcome variable. The path
diagram is depicted in Figure 3. The Bayesian structural
equation model for the case study used 495,000 post-burn-in
draws.5

Based on the initial model in Figure 3, our BMA-SEM
algorithm selected one, one, and three models out of 218

(262,144) total possible models for C = 4, C = 20, and C =
100, respectively. Table 2 presents the chosen three models
from the BMA-SEM for C = 100. The first and the best
model (M1) in the BMA-SEM with C = 100 was also the
model selected in the BMA-SEM with C = 4 and C = 20.
Regressions in the model are marked with a dot if they were
included in the model. The three models accounted for
100% of the total posterior model probability. There were
seven regressions set to zero in the initial model, including
Reading on ESCS, Gender, and Immigr; ELAB on MEMO;
CSTRAT on MEMO and ELAB; and MEMO on Immigr.
With the exception of Reading on Immigr, the remaining
effects appear in all three models, indicating that there is
strong evidence for these regressions (D. Wang, Zhang, &

X1

X2

X3 Y2

Y3

Y1

1

1.0

–1.0

2.0

3.0

2.0 3.0

1.0

0.01

1

1.0

1.0

2.0

0.5

0.750.5

1.0

1.5

e1

e3

e2

FIGURE 2 Model 2 for the simulation study.

4 Our use of two chains and this large number of draws was to ensure
wide sampling of the posterior distribution to obtain valid comparisons
across conditions.

5 As with the simulation study, use of such a large number of post-burn-in
draws was to ensure coverage and convergence of the MCMC sampling.
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Bakhai, 2004). Nevertheless, the best model accounted for
only 72% of the total posterior model probability (PMP)
indicating a fair amount of uncertainty remaining in the
model selection.

Table 3 presents the results from the BMA-SEM and the
Bayesian structural equation model. We observe large dif-
ferences between two approaches. As we described earlier,
the six regressions that were assumed to be zero in the initial
model showed strong evidence for their effect on Reading.
On the other hand, the regressions of ELAB on Immigr and
CSTRAT on Immigr that existed in the initial model indi-
cated weak evidence for their effects in the BMA-SEM (D.
Wang et al., 2004).

Predictive Performance Comparison

For our case study using the PISA 2009 data, the predictive
performance of BMA-SEM with three different C values
was compared to the predictive performance of FSEM and

the Bayesian structural equation model. The results are
presented in Table 4. We find, as theoretically expected,
that regardless of the C value, BMA-SEM yields better
predictive performance based on predictive coverage and
the log-score rule. It is important to note that the choice of
C values could influence predictive performance in other
substantive examples.

CONCLUSION

For decades, the focus of attention in SEM has been on
goodness-of-fit. This focus has led to a proliferation of
alternative fit indexes that are designed to mitigate the
known sensitivities of the likelihood ratio test (see, e.g.,
Kaplan, 2009). This focus on goodness of fit is understand-
able but has detracted from developing models that could be
used beyond the immediate investigation. The question of
using a model for some purpose beyond the immediate

TABLE 1
Simulation Study Results: 90% Coverage and Log-Score Averaged Over 100 Replications

N ¼ 100 N ¼ 2; 500

Model Method (C) M (SE) Log-Score M (SE) Log-Score

Model 1 BMA-SEM (4) 0.91 0.03 –0.09 0.92 0.01 –0.08
BMA-SEM (20) 0.91 0.03 –0.09 0.92 0.01 –0.08
BMA-SEM (100) 0.91 0.03 –0.09 0.92 0.01 –0.08
FSEM 0.91 0.03 –0.09 0.92 0.01 –0.08
ΒSEM 0.92 0.03 –0.08 0.92 0.01 –0.08
True SEM 0.93 0.03 –0.07 0.92 0.01 –0.08

Model 2 BMA-SEM (4) 0.91 0.03 –0.09 0.92 0.01 –0.08
BMA-SEM (20) 0.91 0.03 –0.09 0.92 0.01 –0.08
BMA-SEM (100) 0.91 0.03 –0.09 0.92 0.01 –0.08
FSEM 0.91 0.03 –0.09 0.92 0.01 –0.08
BSEM 0.92 0.03 –0.08 0.92 0.01 –0.08
True SEM 0.92 0.03 –0.08 0.92 0.01 –0.08

Note. C refers to the cutoff values of the Occam’s window; BMA=Bayesian model averaging; BSEM = Bayesian structural equation model; FSEM =
frequentist SEM; true SEM = SEM using true parameter values.

ESCS MEMO

ReadingELAB

CSTRAT

Gender

Immigr

1

1

1 1

e3

e4

e1

e2

FIGURE 3 SEM model for the case study based on PISA data.
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investigation leads us to consider the accuracy of a model’s
predictions. The issue of predictive accuracy is a central
feature of Bayesian statistics—arguably more central than

goodness of fit. Indeed, the BIC and DIC are oriented
toward choosing models based on considering predictive
accuracy. If the goal of model building is one of predictive
accuracy, then we should be less concerned about the fit of
one’s idiosyncratic model and more concerned about finding
a model that will predict well.

In the Bayesian domain, BMA is known to yield models
that perform better than any given submodel on the criteria
of predictive accuracy. This is due to the fact that not all
models are equally good as measured by their posterior
model probabilities—yet all models contain some important
information. By combining models and at the same time
accounting for model uncertainty, we obtain a stronger
model in terms of predictive accuracy.

It should be noted that model averaging has been stu-
died within the frequentist tradition. A full comparison of

TABLE 3
Comparison of BMA-SEM Versus Bayesian Structural Equation Model (BSEM) Results for the Program for International

Student Assessment Data

BMA-SEM BSEM

Parameter M(β|D) SD (β|D) p (β|d) EAP SD 95% PPI

MEMO,ESCS 0.07 0.04 0.87 0.06 0.02 0.01 0.10
ELAB,ESCS 0.10 0.02 1.00 0.14 0.03 0.09 0.19
CSTRAT,ESCS 0.18 0.02 1.00 0.28 0.02 0.23 0.32
Reading,ESCS 0.36 0.02 1.00 —
MEMO,Gender 0.28 0.04 1.00 0.27 0.04 0.19 0.36
ELAB,Gender –0.15 0.04 1.00 –0.02 0.04 –0.11 0.07
CSTRAT,Gender 0.18 0.03 1.00 0.30 0.04 0.21 0.38
Reading,Gender 0.24 0.03 1.00 —
MEMO,Immigr 0.20 0.06 1.00 —
ELAB,Immigr 0.00 0.00 0.00 0.14 0.06 0.03 0.26
CSTRAT,Immigr 0.01 0.04 0.15 0.23 0.06 0.12 0.34
Reading,Immigr 0.00 0.00 0.00 —
ELAB,MEMO 0.46 0.02 1.00 —
CSTRAT,MEMO 0.44 0.02 1.00 —
Reading,MEMO –0.22 0.02 1.00 –0.25 0.02 –0.29 –0.21
CSTRAT,ELAB 0.37 0.02 1.00 —
Reading,ELAB –0.13 0.02 1.00 –0.15 0.02 –0.19 –0.11
Reading,CSTRAT 0.34 0.02 1.00 0.44 0.02 0.40 0.48

Note. N = 2,526; BMA = Bayesian model averaging; EAP = expected a posteriori; SD = posterior standard deviation; PPI =
posterior probability interval.

TABLE 2
Selected Models by BMA-SEM With the C = 100 for the Program for

International Student Assessment Data

Parameter M1 M2 M3

MEMO,ESCS • •
ELAB,ESCS • • •
CSTRAT,ESCS • • •
Reading,ESCS • • •
MEMO,Gender • • •
ELAB,Gender • • •
CSTRAT,Gender • • •
Reading,Gender • • •
MEMO,Immigr • • •
ELAB,Immigr
CSTRAT,Immigr •
Reading,Immigr
ELAB,MEMO • • •
CSTRAT,MEMO • • •
Reading,MEMO • • •
CSTRAT,ELAB • • •
Reading,ELAB • • •
Reading,CSTRAT • • •
BIC 39461.68 39464.74 39465.15
PMP 0.72 0.15 0.13

Note. , refers to regression of left-hand variable onto right-hand vari-
able; BIC = Bayesian information criterion; PMP = posterior model
probability.

TABLE 4
90% Coverage and Log-Score for Program for International Student

Assessment Example

Method (C) 90% Coverage Log-Score

BMA-SEM (4) 0.90 –0.11
BMA-SEM (20) 0.90 –0.11
BMA-SEM (100) 0.90 –0.11
FSEM 0.88 –0.13
Β SEM 0.88 –0.13

Note. C refers to the cutoff values of the Occam’s window;
BMA=Bayesian model averaging; FSEM = frequentist structural equation
modeling; BSEM = Bayesian structural equation modeling.
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frequentist model averaging was beyond the scope of this
article (see, e.g., H. Wang, Zhang, & Zou, 2009, for a
review; see also Claeskens & Hjort, 2008). However, we
believe that future research should formally compare
frequentist-based model averaging to BMA in terms of
their relative advantages with respect to predictive
performance.

This article considered BMA in the context of structural
models among observed variables (sometimes referred to as
path analysis). It is important to examine BMA for struc-
tural models that include latent variables as well.

Incorporating latent variables into a BMA for structural
equation models is not trivial insofar as a decision must be
made regarding how latent variable loadings should be
treated in the BMA process. That is, assuming that the
measurement part of the model is specified a priori, con-
sideration then needs to be given to whether factor loadings
should be removed or added as cross-loadings in the up and
down algorithm. Such changes would, in principle, change
the meaning of the latent variables and lead to a final
measurement model that for predictive purposes might
bear little resemblance to the initial measurement model.
Clearly, this issue deserves further investigation.

BMA is not without theoretical difficulties. Perhaps the
most important issues lies in the consideration of priors
assigned to models in the averaging process. As pointed
out by Claeskens and Hjort (2008, p. 218), uniform priors
on model parameters can be improper and the usual
normalizing constants would need to be adjusted across
models. Moreover, with regard to nested models, the uni-
form prior might not be the best way to represent “non-
informativeness.” Indeed, Jeffreys (1961) suggested that
for nested models, one use pj ¼ 1=ðjþ 1Þ for j ¼ 0; 1; . . .
as the prior probability, thus giving low prior probabilities
to high-dimensional models. These issues deserve careful
future study in the context of BMA for SEM.

Still another issue that deserves future research is the com-
parison of the up and down algorithm that we use to implement
Occam’s window and other specification search algorithms with
SEM, such as Tetrad (Spirtes, Glymour, & Scheines, 2000), ant-
colony optimization (Marcoulides & Drezner, 2003), and Tabu
(Marcoulides, Drezner, & Schumacker, 1998), to name a few.

To conclude, we show that BMA can be successfully
applied to structural equation models as a means of obtain-
ing models with good predictive properties. Our simulation
study is, in essence, a frequentist evaluation of our BMA-
SEM approach and shows that BMA-SEM performs as
expected when the true model is known. The case study
demonstrates that when there exists model uncertainty, as
would certainly be the case in a real research setting, our
BMA-SEM approach obtains a model that yields better
predictions than any given submodel. As always, the full
benefit of our BMA-SEM approach will rest on its applica-
tion to practical problems where prediction is of high
priority.
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